Применение искусственного интеллекта в цифровой экономике
Шрифт:
Здравоохранение. Автономные хирургические роботы, виртуальные помощники медицинского персонала и автоматическая диагностика изображений – это новейшие разработки, благодаря которым искусственный интеллект начинает играть решающую роль в технологическом прогрессе сферы здравоохранения, а также в развитии услуг телемедицины в трансграничном режиме.
Сфера развлечений. Машинное обучение на нейронных сетях позволяет предсказывать сценарии поведения пользователя и предоставлять рекомендации по подбору фильмов, музыки, телешоу и другого интересующего потребителя контента. ИИ персонализированно отфильтрует рекламу в зависимости от предпочтений пользователя, что способствует
Спорт. Предиктивный анализ и автоматизация, осуществляемая алгоритмами искусственного интеллекта, применяются в целях принятия бизнес-решений, продажи билетов и прогнозирования результатов спортсменов.
Искусственный интеллект, применяемый в бизнесе, способствует улучшению показателей во всех сферах. К примеру, к бизнеспроцессам, в рамках которых ИИ решает определенные задачи, следует отнести следующие:
Ценообразование. Искусственный интеллект осуществляет изучение статистики и выполняет прогностические функции, обрабатывая гигантские массивы информации в целях подбора наиболее оптимального распределения цен на конкретный вид продукции. Это позволяет в несколько раз повысить объемы выручки и доходов компании.
Безопасность. Самообучающиеся нейронные сети анализируют поведение клиентов и вычисляют подозрительные операции, существенно снижая таким образом негативные последствия действий кибермошенников и киберпреступников, что приводит к отсутствию финансовых потерь, повышенной защищенности системы и росту доверия пользователей.
Маркетинговая сфера. Системы искусственного интеллекта на основе изучения предыдущих продаж и глубокого изучения рынка осуществляют прогнозирование сценариев развития событий. Алгоритмами изучаются контактные данные клиентов, суммы сделок и приобретенные ими товары или услуги. Кроме того, ИИ анализирует поведение конкурентов в целях сопоставления эффективных и неудачных решений и действий. Это позволяет компании разрабатывать и реализовывать грамотную маркетинговую стратегию, которая с высокой степенью вероятности завершится финансовым успехом.
Скорость обработки данных. ИИ позволяет быстро и эффективно анализировать большие массивы информации и разрабатывать пути реакции на указанную информацию. В качестве примера можно привести применение систем искусственного интеллекта при реализации биржевых операций. Следует отметить, что традиционные программные алгоритмы не в состоянии самостоятельно адаптироваться к быстро меняющимся условиям и данным без предварительного обучения. Алгоритмы искусственного интеллекта предоставляют такую возможность и повышают продуктивность работы на бирже.
Процессы автоматизации. Существует большое количество факторов, вызывающих возможные ошибки в работе персонала. Искусственный интеллект, у которого отсутствуют эмоции и чувства, характерные для человека (человеческий фактор), используя данные, функции и технологии, позволяет осуществлять безошибочную и точную работу.
Виртуальные помощники. Чат-боты, Siri и Ok Google – это не единственные примеры. К примеру, чат-бот Олег, применяемый в приложении интернет-банка «Тинькофф» с помощью распознавания речи, общается с клиентами банка посредством цифровых устройств и выполняет стандартные банковские операции, например, осуществляет денежные переводы.
Использование виртуальных помощников – это один из ИИ-инструментов, который со временем будет более широко внедряться в бизнес-процессы и повседневную жизнь современного человека. По статистике Facebook, более 10 000 компаний занимаются разработкой чат-ботов. К примеру, Juniper Research
19
Сергеева Ю. Вся статистика Интернета на 2020 год – цифры и тренды в мире и в России. – [Электронный ресурс]. – Режим доступа: https://www.web-
canape.ru/business/internet-2020-globalnaya-statistika-i-trendy/ (дата обращения:
05.06.2021 г.).
Постоянный контроль и мониторинг инфраструктуры различных компаний – это еще одно направление применения искусственного интеллекта. К текущему моменту времени на мощностях французской энергетической компании Engie успешно применяются дроны с программами распознавания изображений на основе машинного обучения, которые следят за оборудованием и изучают инфраструктуру в целях предотвращения технологических и иных нарушений.
ИИ-системы контроля и мониторинга широко используются и в городской среде. Наиболее простой пример – система распознавания автомобильных номеров с помощью камер видеослежения, применяемая муниципальными организациями. Кроме того, применяются подобные алгоритмы для систем распознавания лиц.
Искусственный интеллект способен снижать риски износа и повреждения оборудования, а также создавать систему безопасности для различных компаний. Автоматизация ручного труда также является важной и неоднозначной темой, поскольку использование алгоритмов искусственного интеллекта в промышленности способно вытеснить из этой сферы человеческий труд. Автоматизированные технологии выполняют сложные процессы быстрее и качественнее, чем человек, они способны работать 24 часа в сутки. Следует подчеркнуть, что основная цель внедрения высокоинтеллектуальных решений сегодня – это не полная замена человека в производственных и бизнес-процессах, но повышение эффективности человеческого труда.
К примеру, японская страховая компания Fukoku Mutual Life Insurance установила программу от IBM-Watson Explorer AI. Данная система анализирует данные медицинских полисов по операциям и процедурам в целях вычисления размеров страховых выплат. По расчетам представителей Fukoku, внедрение искусственного интеллекта позволит им увеличить производительность на 30%.
Еще одно направление применения алгоритмов искусственного интеллекта – это предиктивная аналитика. ИИ-алгоритмические технологии способны обрабатывать огромные массивы данных, выявлять закономерности и осуществлять прогностические функции. В одном из R&D-проектов разрабатывают систему рекомендаций для крупной розничной сети супермаркетов. Система анализирует характеристики покупателей и товаров и на основании данного анализа автоматически составляет качественные рекомендации.
Другой пример применения искусственного интеллекта в бизнесе – это Expedia, крупнейшая в мире онлайн-платформа по планированию путешествий. В рамках этой платформы осуществляется целый ряд процедур, от бронирования отелей до аренды транспорта. Компанией довольно эффективно используются сети машинного обучения для персонализации процесса планирования поездки каждого конкретного клиента. В отличие от традиционных типов прогнозирования, предиктивная аналитика легко адаптируется к изменениям поведения, используя массивы вновь поступающих данных.