Пришелец
Шрифт:
— Кажется я знаю, чем недоволен наш «пламенный марксист-ленинист», хе-хе!
— Вот скажи мне, что это за выражение?! — Островский показал на формулу для вычисления полного сопротивления переменному току.
— Формула подсчёта сопротивления в цепи переменного тока, — как бы не замечая подвоха, ответил Матвей.
— Хорошо, Островский заметно напрягся. Тогда такой вопрос. Смотри, вот формула для вычисления модуля комплексного числа, — указал он на строку в учебнике анализа. Видишь? Один в один совпадает!
— Ну и что?!! — мысленно уже хохоча, ровным тоном спросил Бронштейн.
— Так
— Наверно потому что они описывают реальность не хуже обычных! — Бронштейн не выдержал и расхохотался.
— Не понимаю, чего ты так развеселился?! — зло выкрикнул Островский.
— Над ТОБОЙ смеюсь, — ответил Матвей. Ни дать, ни взять, адепт католической церкви, обнаруживший, что папа отнюдь не непогрешим!
— Причём здесь католическая церковь?
— При том, что верить, что Энгельс во всём прав, может лишь человек, ничего в марксизме не понимающий! Ты, Николай, только что своим умом обнаружил, что заблуждался Энгельс!
— А может это учёные, что эти числа в электродинамике использовали, заблуждаются? — упрямо возразил Островский.
— Не-а. Я работы Энгельса, посвящённые математике, читал. Товарищ Энгельс, увы, учил математику по дрянным учебникам, и мало что в ней понял. Поторопился он с выводом о том, что мнимым числам, и, кстати, тесно с ними связанным многомерным пространствам нельзя найти реальный, физический прообраз в окружающем нас мире. Скорее всего, сильно разозлил Энгельса Дьюринг, своим проституированием математики в угоду клерикальной философии.
— Так мнимые числа же чисто выдумка, как его там, Кардано, кажется! — воскликнул Николай.
— Отнюдь не выдумка! Для введения числа, равного корню квадратному из отрицательной величины были очень веские основания!
— Какие?
— В общем, нашёл Джироламо Кардано общее решение кубических уравнений. И обнаружил любопытную вещь. Кубическое уравнение можёт иметь максимум три корня, три точки пересечения с осью иксов. При анализе его общего решения в радикалах, получается в некоторых случаях, удивительная вешь:
— Промежуточной выкладкой в получении действительных корней является число, равное корню квадратному из отрицательного числа. Ранее, при например, поиске корней квадратного уравнения такие выражения отбрасывались, ибо из графика функции уравнения видно, что с осью иксов он не пересекается. А вот в кубическом уравнении, если взять этот самый корень из отрицательного числа, и предположив, что он имеет смысл, продолжить вычисления, то получаем разумный ответ — действительные корни! Вот Кардано и предположил, что корень квадратный из отрицательной величины — некое число новой, отличной от обычных чисел, природы. Квадрат этого числа даёт отрицательное число.
— Так, на лице Островского
— А очень просто. Обычным числам, положительным и отрицательным, может читал, соответствует числовая прямая — одномерное пространство.
— Читал, понятно.
— Так вот. Мнимые числа лежат… вне этой прямой. То есть образуют… вместе с обычными числами ЧИСЛОВУЮ ПЛОСКОСТЬ! На которой любой точке соответствует пара чисел — обычное, действительное иначе, и… мнимое! То есть, у каждой точки числовой плоскости две координаты, однозначно определяющие её положение — действительная и мнимая!
— Ах вот оно в чём дело! Но почему многомерные пространства? Разве плоскость — многомерное пространство?!
— По отношению к одномерной числовой прямой — естественно, многомерное! И тут есть ещё одно интересное свойство мнимых чисел. К числовой прямой можно провести сколь угодно много взаимно перпендикулярных прямых, образующих оси декартовой системы координат многомерного пространства. И поскольку у нас в определении мнимого числа не указано, как эти перпендикуляры к числовой прямой различать, то, квадрат числа с ЛЮБОГО ТАКОГО ПЕРПЕНДИКУЛЯРА, будет отрицательным числом на числовой прямой! То есть мнимых чисел разной природы — бесконечно много! По природе на свою координатную ось! Так в математике появилсь гиперкомплексные числа — кватернионы и октанионы — соответственно наборы чисел разной природы для четырёхмерного и восмимерного пространств!
— Ладно, Бронштейн. Про мнимые числа я понял, и частично — про их связь с координатными осями. Но почему такую простую вешь не понял Энгельс?
— Очевидно, у него не было такого учителя, каким для тебя являюсь Я! — с улыбкой ответил Бронштейн.
— М-да. Островский задумался. А ведь могут быть проблемы. Это я, уже математически «подкованный», понял. А вот необразованные товарищи могут возмутиться…
— Поэтому насущной проблемой становится создание авторитетного учебного заведения комсомола — ответил Матвей. Раз нет возможности каждому ошибку Энгельса растолковать, нужно, чтобы на неё указали авторитетные товарищи в партии. И вообще, раз марксизм позиционируется как наука, то придётся ему принять научные принципы. И первый — мнение авторитета ничего не значит перед фактами! Второй — учёный не может не ошибаться! Хороший учёный признаёт свои ошибки, и радуется, когда их обнаруживает. Третье — наука на самом деле подобна картографии и создаёт «карты» структуры реального мира.
В Кичкасс путешественники прибыли рано утром, специально заночевав в тридцати километрах от завода, чтобы успеть к началу рабочей смены.
Увидев обшарпанные здания завода, Макаров ехидно прокомментировал:
— Запорожье издавна славилось своими неприхотливыми запорожцами! Хоть людьми, хоть машинами. Во, гляди, прекрасный образчик запорожского хай-тека: — трактор, как будто сработанный каменными рубилом и топором неандертальца! — и посмеиваясь, указал Бронштейну на небольшой трёхколёсный трактор, что горделиво выезжал из ворот завода.