Про эту вашу физику
Шрифт:
Интереснейшим практическим следствием неопределенности является туннельный эффект.
Если по каким-то причинам местонахождение частицы становится все более и более определенным, то импульс становится, как мы уже поняли, совсем непредсказуемым. Вследствие этого совершенно обычного квантового явления неопределенность импульса может дать частице дополнительную энергию. Такая частица иногда вытворяет очень странную вещь: проходит сквозь непреодолимый барьер. В макромире, где такого, конечно же, не случается, это выглядело бы как прохождение сквозь стену или выпрыгивание из ямы без видимых причин. Муха из
Не так давно (в 2016) ученые обнаружили, что молекула воды, оказавшись в очень узком канале кристаллической решетки берилла (минерал такой), чувствует себя неуютно, застряв в одном положении, как мы в автобусе, когда едем утром на работу. Из-за этого дискомфорта молекула начинает демонстрировать квантовые эффекты: поворачивается в этом канале, но не как макрообъект плавно и со скрипом, а мгновенно меняет свое положение, как если бы стрелка часов поворачивалась только десятиминутными интервалами — это и есть туннельный эффект. Мда, как бы это было удобно в автобусе…
Кто еще скажет, что наука это скучно?
Но это мы сейчас в 21 веке знаем о квантовых чудесах и даже принимаем их за норму. А в те годы, когда Гейзенберг предложил свой принцип, самые светлые умы человечества сошлись в нешуточной битве. Как мы уже говорили, Эйнштейну очень не нравились всякие неопределенности в физике. И в то время, когда Нильс Бор пытался создать хоть какое-то подобие квантовой теории, Эйнштейн всячески изводил его провокационными вопросами. В 30-е годы Эйнштейн и два его единомышленника — Подольский и Розен — предложили так называемый ЭПР-парадокс (по первым буквам фамилий хитрых физиков), гипотетический эксперимент, который доказывал, что неопределенность Гейзенберга можно обойти. Те, кто немного разбирались в том, что происходит, набрали себе побольше попкорна и издалека, не вмешиваясь, наблюдали как физики троллят друг друга. Заголовки газет тех времен гласили: «Эйнштейн атакует квантовую теорию: Учёный и двое его коллег находят её „неполной“, хотя и „корректной“».
Рискнем упрощенно разобрать суть парадокса — вы же за этим читаете наши лекции? Допустим Гейзенберг немного прав, и мы почему-то не можем измерить импульс и координаты частицы одновременно. Но, кажется, у Эйнштейна есть лайфхак. Давайте возьмем частицу, которая собирается распадаться! После распада образуется две частицы: они разлетятся, получив некоторые общие характеристики. Такие частицы физики называют «запутанными» (запомните этот термин). Отбросив сложную матчасть, вспомним закон сохранения импульса из классической механики — суммарный импульс тел ДО равен суммарному импульсу ПОСЛЕ. Итак, «материнская» частица распадается, а ее части разлетаются, поделив импульс между собой, как бильярдные шары.
Дальше все логично и гениально: мы измеряем местоположение первой частицы, а импульс второй частицы. Таким образом, для первой частицы мы получаем и координаты (которые измерили непосредственно) и ее импульс (который просто посчитали на калькуляторе, отняв от первоначального значения импульс второй частицы).
Осознайте, насколько коварен был Эйнштейн! Да и поставить подобный эксперимент в те годы было затруднительно (коллайдеры еще не изобрели).
Озадаченный Нильс Бор практически на одной вере в чудеса заявил, что эксперимент будет некорректен, потому что частица приобретает конкретные значения импульса только после измерения, а не до распада, и не в момент распада. По сути это были все те же рассуждения, что и
Через 30 лет, когда Бор и Эйнштейн покинули наш грешный мир, так и не договорившись, один физик по имени Белл надумал специальные уравнения, с помощью которых можно было бы проверить, кто был прав в споре. Его уравнения, известные как неравенства Белла, могли прояснить, есть ли скрытые параметры в поведении волновой функции или там воистину рэндомные процессы. А еще чуть более 20 лет спустя (в 1982 году) французские инженеры сумели поставить эксперимент, в котором неравенства Белла проверили на настоящих запутанных частицах.
Опять же в рамках нашего поверхностного повествования мы не в силах рассказать о неравенствах Белла подробно, но гарантируем, что в сети есть несколько отличных попыток их разжевать. Мы же попробуем парой абзацев объяснить суть эксперимента, вызвав у вас легкую бессонницу, а не глубокую экзистенциальную депрессию.
У частиц есть такая характеристика как спин. Вообще этот термин очень любят фрики-лжеученые всех мастей. Трансмодификацией (не знаем, что это) спина объясняется любая ересь и несостыковка в псевдотеориях и гипотезах от лучших, да и худших, умов альтернативной «науки». Поэтому по ходу повествования, а также чтобы оградить читателей от попадания на удочку мошенников, нам придется кое-что прояснить о спине.
Говоря языком физики, спин — это момент импульса, штука, похожая на импульс, но применимая к вращающимся телам. Спин как бы намекает нам, что частица не просто летает туда-сюда, вся такая размазанная по пространству, но еще и вращается. Одному Богу с его суперпространственным зрением понятно, как может вращаться волна вероятности, находящаяся в суперпозиции своих состояний, но отчего-то частицы, не будучи вращающимися предметами, имеют вот этот вот спин. Короче, у спина есть направление, из-за которого частицы ведут себя по-разному в магнитном поле (так собственно спин и обнаружили), а также в связи с тем, что в мире частиц все квантуется, то есть спин имеет не плавные значения, а дискретные, и этих значений не так уж и много. У электрона спин — 1/2 , у фотона — 1, у гипотетического гравитона подозревают спин, равный 2. Есть еще какие-то дикие частицы со спином 5/2, а спин бозона Хиггса равен нулю и так далее. Причем можно же было давать спину числовые значения попроще, а не такие странные дроби. Но ученые не ищут легких обозначений — у них, видите ли, традиция.
Итак, электрон имеет некоторый спин, который куда-то направлен. С помощью хитрого оборудования можно измерять направление спина — при этом он, как и другие параметры, в силу жутких квантовых эффектов, при измерении выныривает к нам из суперпозиции. Эксперимент по разрешению ЭПР-парадокса состоял в том, что у групп запутанных протонов замеряли спины. И результаты статистически анализировали: проще говоря, составляли таблицы вариантов, выпадающих чаще всего. Хитрые выкладки теории вероятности гласили, что если бы были правы Эйнштейн, Подольский и Розен, то вероятность некоторых комбинаций спинов при гипотезе скрытых параметров составляла бы определенное значение, например, 44 %. А если был прав Бор, и квантовый мир это генератор случайных чисел, то вышеуказанная вероятность получилась бы немного другой, скажем, 50 %. Ученые провели множество экспериментов, накопили данные и посмотрели, какие вероятности у них выходят, сравнив с ожиданиями от двух гипотез.