PRO парадоксы науки
Шрифт:
С момента открытия радиоактивности физиков занимает интересный вопрос: а почему мы не наблюдаем вокруг повсеместных актов распада материальных тел?
Эта задача подробно дискутировалась в тридцатых годах прошлого столетия, еще до открытия таких важных компонентов микрочастичных превращений, как позитроны, мезоны и мюоны. Однако уже тогда стабильность материи представлялась как одна из самых непонятных загадок природы, ведь по идее такой нуклон, как протон, всегда может поглотить один из орбитальных электронов, превратив атом водорода в поток квантов электромагнитного излучения. Это дает весьма устрашающую картину, ведь водород – основа вещественной части Вселенной!
Надо сказать, что экспериментальные
Один из сюрпризов, преподнесенных нам физикой частиц во второй половине двадцатого века, состоит в том, что протон, оказывается, не вечен. Протоны, считавшиеся стабильными и бесконечно долго живущими частицами, как оказалось, по истечении достаточно долгого времени могут распасться на более мелкие частицы. В сущности, протонам свойственна экзотическая разновидность радиоактивности. Они излучают более мелкие частицы и превращаются в нечто новое. Этот процесс распада займет время, значительно превышающее современный возраст Вселенной, время жизни звезд и даже намного больше жизни галактик. Получается, что по сравнению с вечностью протоны исчезнут довольно скоро.
Распад протонов может пойти по множеству разных путей, вследствие чего получится много разных продуктов этого распада, таких как позитроны и нейтральные пионы, соответственно, распадающиеся на кванты электромагнитного излучения. Возможно и множество иных вариантов распада, но чаще всего физики обсуждают именно такие пути распада протонов, когда возникают крайне нестабильные электронейтральные пионы, тут же превращающиеся в фотоны. Теоретически вместе с протоном должны распасться и вторые нуклоны – нейтроны, которые в связанном ядерном состоянии должны существовать очень долго. Между тем в свободном состоянии нейтроны живут всего около десяти минут, распадаясь на протон, электрон и антипартнер нейтрино – антинейтрино.
Сегодня физики-теоретики расходятся в оценке сроков жизни связанных нуклонов. Одно время можно было встретить предсказание о том, что большинство протонов распадется примерно через тридцать так называемых космологических декад – 1030 лет. Число очень большое, ведь даже переведенное в миллиардолетия, оно содержит более двадцати нулей. Однако в последний период превалирует точка зрения, возникшая из ряда экспериментов с элементарными частицами, разгоняемыми до гигантских энергий на ускорителях: время жизни протона может даже превысить тридцать две космологические декады.
Если принять во внимание возраст нашего мира в 13,7 миллиардолетия, то сама мысль об экспериментальной проверке времени жизни микрочастиц, оцениваемой в десятки космологических декад может показаться очень странной. Однако тут определенные надежды дает теория радиоактивного распада, согласно которой все элементарные частицы, включая и протоны, не живут в течение какого-то строго определенного времени, по прошествии которого все они одновременно распадаются.
На самом фундаментальном уровне многие физические теории имеют неотъемлемый закон, запрещающий распад протонов, даже несмотря на то что в результате этого распада они могли бы перейти в состояние
Долгое время предполагалось, что всеобщая стабильность атомарных образований объясняется существованием электрической биполярности, когда аннигиляция зарядов протона и электрона нарушила бы общий зарядовый баланс. Впоследствии данные идеи были развиты в концепцию «барионного числа», которое так же, как и энергия с электрическим зарядом, должно сохраняться в любых превращениях микрочастиц. Уточним, что барионами считают обширное семейство микрочастиц, включающее вместе с протоном такие «тяжелые» частицы (по-гречески тяжесть – «барис»), как нейтрон и нестабильные микрочастицы гипероны. Условно считается, что все барионы обладают барионным числом «+1». В любой атомарной структуре барионное число составляет общую сумму всех барионных чисел «комплектующих» микрочастиц. Следовательно, распад протона был бы переходом от единичного барионного числа к нулевому ансамбля каких-нибудь легких частиц, что категорически запрещено барионным принципом сохранения.
Глава 5. Теория Всего
Мечту Эйнштейна о создании единой теории Вселенной осуществить пока не удалось, но успехи последних лет показывают, что мы на верном пути. Конечно, вряд ли кто-то из ученых станет загадывать, когда придет удача, но большинство их них уверено, что когда-нибудь это случится.
Наша же цель отличается от той, которую поставил перед собой Эйнштейн. Всем ясно, что он опередил свое время, тогда еще многое оставалось непонятным. Ученые не знали многих типов элементарных частиц, не знали о симметрии в природе, о калибровочных теориях и очень мало о Большом взрыве, с которого все началось.
Б. Паркер.
Мечта Эйнштейна: В поисках единой теории строения Вселенной
Среди первоочередных нерешенных задач фундаментальной науки выделяется грандиозная проблема создания Теории Всего. Величайший в истории науки мыслитель Альберт Эйнштейн первым парадоксально соединил пространственно-временные свойства нашего континуума, открыв свою общую теорию относительности и наметив путь объединения всех известных взаимодействий с силами всемирного тяготения. В теории гравитации Эйнштейна вблизи любого материального тела или энергии искривляется само пространство-время, так что траектории частиц проходят по его рельефу, словно движутся в гравитационном поле.
В большинстве случаев противоречивые требования теории относительности и квантовой механики настолько взаимно малы, что ими легко пренебрегают. Однако и здесь есть исключения, например, при сильном искажении пространства-времени эффекты квантовой гравитации могут быть весьма существенны.
Прежде всего это касается объединения квантовой механики и теории относительности, например так, как это происходит в астрономической науке квантовой космологии. В идеале будущая объединенная теория должна связать между собой все силы мироздания с помощью единой системы уравнений или даже просто одного уравнения. Вся трудность в том, что теория относительности описывает общую структуру пространства-времени, а квантовая механика – поведение субатомных микрочастиц. Именно поэтому теории во многом противоречат друг другу.
Злыднев Мир. Дилогия
Злыднев мир
Фантастика:
фэнтези
рейтинг книги
Фараон
1. Фараон
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Душелов. Том 2
2. Внутренние демоны
Фантастика:
фэнтези
боевая фантастика
аниме
рейтинг книги
Север и Юг. Великая сага. Компиляция. Книги 1-3
Приключения:
исторические приключения
рейтинг книги
Архил...? 4
4. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
рейтинг книги
Мститель из Стали
Фантастика:
героическая фантастика
рейтинг книги
Развод с генералом драконов
Фантастика:
фэнтези
рейтинг книги
Возвышение Меркурия. Книга 15
15. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
рейтинг книги
Возвышение Меркурия. Книга 16
16. Меркурий
Фантастика:
попаданцы
аниме
рейтинг книги
Отмороженный 11.0
11. Отмороженный
Фантастика:
боевая фантастика
рпг
попаданцы
фантастика: прочее
фэнтези
рейтинг книги
Отверженный VII: Долг
7. Отверженный
Фантастика:
городское фэнтези
альтернативная история
аниме
рейтинг книги
Прометей: каменный век II
2. Прометей
Фантастика:
альтернативная история
рейтинг книги
Душелов. Том 3
3. Внутренние демоны
Фантастика:
альтернативная история
аниме
фэнтези
ранобэ
хентай
рейтинг книги
Адептус Астартес: Омнибус. Том I
Warhammer 40000
Фантастика:
боевая фантастика
рейтинг книги
