Программирование игр и головоломок
Шрифт:
Программисты обманываются, поскольку они не берут на себя труд прояснить различные ситуации.
В строке 200 мы знаем, что цепочка а пройдена полностью, и исследованы все символы, не являющиеся пробелами. Если в цепочке b содержится еще какой-нибудь символ, не являющийся пробелом, то равенства цепочек нет. Все в порядке.
В строке 300 цепочка а пройдена вплоть до некоторого символа, не являющегося пробелом, и этот символ еще не исследован. Цепочка b пройдена полностью, и в ней не содержится более ни одного символа, не являющегося пробелом. Следовательно, эти две цепочки различны. Можно было бы сказать, что дальнейшее движение по цепочке а бесполезно, но не приводит к ошибке. Но это неверно. Вы остановились на еще не исследованном
Ваша программа должна сохранять симметричную роль обеих цепочек. Не начинайте проверять результат пробега цепочки а, не пробежав цепочки b, и изучайте обе цепочки разом.
Возьмем общую ситуацию:
а пройдена вплоть до i включительно;
b пройдена вплоть до j включительно;
обе части совпадают с точностью до пробелов.
Эта программа совершенно симметрична относительно а и b…
Головоломка 33.
Нужно работать по модулю n. Удобнее всего пронумеровать элементы вектора от 0 до n– 1. Все элементы спускаются вниз на m по модулю n. Элемент, который переходит в 0, имеет номер m; элемент, который переходит в m, имеет номер 2m по модулю n; элемент, который переходит в 2m, имеет номер 3m по модулю n… Таким образом, мы получаем цепочку чисел, кратных m по модулю n. Весь вопрос в том, чтобы узнать, порождает ли последовательность чисел, кратных m по модулю n, последовательность всех целых от 0 до n– 1.
Это так, если m и n взаимно просты. В противном случае пусть с наибольший общий делитель m и n:
m = m'с, n = n'c,
n' * m = n' * m' * с = m' * n = 0
Эта цепочка возвращается в 0 за n' = n/с операций. При этом пробегается не весь вектор, а только его элементы, сравнимые с 0 по модулю с.
Беря в качестве исходных элементов различных циклов последовательно целые числа от 0 до c– 1, вы разместите все элементы вектора, причем каждый из них будет перемещаться в точности один раз…
Головоломка 34.
Рассмотрите более общую задачу, что заставит вас открыть одно из этих знаменитых «преобразований программы», столь полезных, когда желательно улучшить уже существующие программы. Обозначим через t и u два условия, а через a и b — две последовательности инструкций. Вот простой цикл:
Последовательность операций следующая:
— проверяется условие t,
— если оно истинно, то проверяется u,
— если u истинно, то выполняется a, и все возобновляется.
Допустим, что условия t и u таковы, что я имею возможность проверить u, даже если проверка условия t дает значение ЛОЖЬ [29] . Тогда, пока условия t и u истинны, в цикле выполняется а.
Вот другая последовательность, которая может встретиться:
— проверяется условие t,
— если оно истинно, то проверяется u,
29
Вот пара условий, которая не обладает этим свойством: t: x /= 0; u: sin(1/x) > 0. — Примеч. ред.
— если u ложно, то выполняется b, и все возобновляется.
Таким образом, мы приходим к форме, для которой можно доказать, что она всегда эквивалентна исходной (с точностью до ограничения, что должна существовать возможность вычисления и даже в случае, когда t ложно).
Мы перепишем программу для определения равнин, чтобы придать ей форму ПОКА, заключенного в скобки ЕСЛИ: