Чтение онлайн

на главную - закладки

Жанры

Программирование на языке пролог
Шрифт:

implout((P ‹-› Q), (P1 & Q1) # (~Р1 & ~Q1))):- !, implout(P,Pl), implout(Q,Ql).

implout((P -› Q),(~P1 # Q1)):-!, implout(P,P1), implout(Q,Q1).

implout(all(X,P),all(X,P1)):- !.

implout(exists(X,P),exists(X,P1)):-!, implout(P, P1).

implout((P & Q),(P1 & Q1)):- !, implout(P,P1), implout(Q,Q1).

implout((P # Q),(P1 # Q1)):-!, implout(P,P1), implout(Q,Q1).

implout((-P),(~Pl)):-!, implout(P,P1).

implout(P,P).

Этап 2 - перенос отрицания внутрь формулы

Здесь необходимо определить два предиката – neginи neg.Целевое утверждение negin(X, Y)означает, что формула Yполучена

из Xв результате применения к ней преобразования «перенос отрицания». Этот предикат является основным и именно к нему производится обращение из программы. Целевое утверждение neg(X, Y)означает, что формула Yполучена из формулы ~X спомощью того же преобразования, что и в negin.В обоих случаях предполагается, что формула прошла обработку на первом этапе и, следовательно, не содержит -› и ‹-›

negin((~P),P1):-!, neg(P,P1).

negin(all(X,P),all(X,P1)):-!, negin(P,P1).

negin(exists(X,P),exists(X,P1)):-!, negin(P,P1).

negin((P & Q),(P1 & Q1)):-!, negin(P,P1), negin(Q,Q1).

negin((P # Q),(P1 # Q1)):-!, negin(P,P1), negin(Q,Q1).

negin(P,P).

neg((~P),P1):-!, negin(P,P1).

neg(all(X,P), exists(X,P1)):-!, neg(P,P1).

neg(exists(X,P),all(X,P1)):-!, neg(P,P1).

neg((P &Q),(P1 # Q1)):-!, neg(P,P1), neg(Q, Q1).

neg((P # Q),(P1 & Q1)):~!, neg(P,P1), neg(Q, Q1).

neg(P,(~P)).

Этап 3 - сколемизация

Предикат skolemимеет три аргумента, соответствующих: исходной формуле, преобразованной формуле и списку переменных, которые на текущий момент были введены посредством кванторов общности.

skolem(all(X,P),all(X,P1),Vars):-!, scolem(P,Pl,[X|Vars]).

skolem(exists(X,P),P2,Vars):-!, gensym(f,F), Sk =..[F|Vars], subst(X,Sk,P,P1), skolem(P1,P2,Vars).

skolem((P # Q),(P1 # Q1),Vars):-!, skolem(P,P1,Vars), skolem(Q,Q1,Vars).

skolem((P & Q),(P1 & Q1), Vars):-!, skoIem(P,P1,Vars), skolem(Q,Q1,Vars).

skolem(P,P,_).

В этом определении используются два новых предиката. Предикат gensymдолжен быть определен таким образом, что целевое утверждение gensym(X, Y)вызывает конкретизацию переменной Yзначением, представляющим новый атом, построенный из атома Xи некоторого числа. Он используется для порождения сколемовских констант, не использовавшихся ранее. Предикат gensymопределен в разд. 7.8 как генатом.Второй новый предикат, о котором уже упоминалось, это subst.Мы требуем, чтобы subst(Vl,V2,F1,F2)было истинно, если формула F2получается на F1в результате замены всех вхождений V1на V2.Определение этого предиката оставлено в качестве упражнения для читателя. Оно аналогично определениям, приведенным в разд. 7.5 и 6.5.

Этап 4 - вынесение кванторов общности в начало формулы

После выполнения этого этапа, естественно, будет необходимо иметь возможность указывать, какие атомы Пролога представляют переменные формулы исчисления предикатов, а какие атомы представляют константы. Мы больше не сможем воспользоваться удобным правилом, согласно которому переменными являются в точности те символы, которые вводятся с помощью кванторов. Здесь представлена программа, выполняющая операции вынесения и удаления кванторов общности.

univout(all(X,P), P1):- !, univout(P,P1).

univout((P & Q),(P1 & Q1)):-!, univout(P,P1), univout(Q,Q1).

univout((P # Q),(P1 # Q1)):- !, univout(P,P1), univout(Q,Q1).

univout(P,P).

Эти

правила определяют предикат univoutтаким образом, что univout(X, Y)означает, что Yполучается из Xв результате вынесения и удаления кванторов общности.

Необходимо отметить, что данное определение univoutпредполагает, что указанные операции будут применяться лишь после того, как полностью будут завершены первые три этапа преобразования. Следовательно, формула не должна содержать импликаций и кванторов существования.

Этап 5 - использование дистрибутивных законов для. & и #

Реальная программа для преобразования формулы в конъюнктивную нормальную форму является значительно более сложной по сравнению с последней программой. При обработке формулы вида (Р # Q),где Ри Q– произвольные формулы, прежде всего, необходимо преобразовать Ри Qв конъюнктивную нормальную

форму, скажем P1и Q1. И только после этого можно применять одно из преобразований, дающих эквивалентную формулу. Процесс обработки должен происходить именно в таком порядке, так как может оказаться, что ни Рни Qне содержат& на верхнем уровне, а Р1и Q1содержат. Программа имеет вид:

conjn((P # Q),R):-!, conjn(P,P1), conjn(Q,Q1), conjn1((P1 # Q1),R).

conjn((P& Q),(P1& Q1)):-!, conjn(P,P1), conjn(Q,Q1).

conjn(P,P).

conjn1(((P & Q) # R), (P1 & Q1)):- !, conjn((P # Q), P1), conjn((Q # R), Q1).

conjn1((P # (Q & R)),(P1 & Q1)):-!, conjn((P # Q), P1), conjn((P # R), Q1).

conjn1(P,P).

Этап 6 - выделение множества дизъюнктов

Здесь представлена последняя часть программы приведения формулы к стандартной форме. Прежде всего, определим предикат clausify, который осуществляет построение внутреннего представления совокупности дизъюнктов. Эта совокупность представлена в виде списка, каждый элемент которого является структурой вида cl(A, В). В этой структуре А– это список литералов без отрицания, а В– список литералов с отрицанием (знак отрицания ~ явно не содержится). Предикат clausifyимеет три аргумента. Первый аргумент для формулы, передаваемой с пятого этапа обработки, Второй и третий аргументы используются для представления списков дизъюнктов. Предикат clausifyсоздает список, заканчивающийся переменной, а не пустым списком ( []) как обычно, и возвращает эту переменную посредством третьего аргумента. Это позволяет другим правилам добавлять элементы в конец этого списка, конкретизируя соответствующим образом указанную переменную. В программе выполняется проверка с целью выявления ситуаций, когда одна и та же атомарная формула входит в дизъюнкт как с отрицанием, так и без него. Если такая ситуация имеет место, то соответствующий дизъюнкт не добавляется к списку, так как подобные дизъюнкты являются тривиально истинными и не дают ничего нового. Выполняется также проверка неоднократного вхождения литерала в дизъюнкт.

clausify((P& Q),C1,C2):-!, clausify(P,C1,C3), clausify(Q,C3,C2).

clausify(P,[cl(A,B)|Cs],Cs):- inclause(P,A,[],B,[]),!.

clausify(_,C,C).

inclause((P # Q), A, A1, B, B1):-!, inclause(P,A2,A1,B2,B1),inclause(Q,A,A2,B,B2).

inclause((~P),A,A,B1,B):-!, notin(P,A), putin(P,B,B1).

inclause(P,A1,A,B,B):- notin(P,B), putin(P,A,A1).

notin(X,[X|_]):-!, fail.

notin(X,[_|L]):-!, notin(X,L).

notin(X,[]).

putin(X,[],[X]):-!.

Поделиться:
Популярные книги

Адвокат Империи 3

Карелин Сергей Витальевич
3. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 3

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Вонгозеро

Вагнер Яна
1. Вонгозеро
Детективы:
триллеры
9.19
рейтинг книги
Вонгозеро

Ведьма Вильхельма

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
8.67
рейтинг книги
Ведьма Вильхельма

Папина дочка

Рам Янка
4. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Папина дочка

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Как я строил магическую империю 7

Зубов Константин
7. Как я строил магическую империю
Фантастика:
попаданцы
постапокалипсис
аниме
фантастика: прочее
5.00
рейтинг книги
Как я строил магическую империю 7

Лучший из худший 3

Дашко Дмитрий
3. Лучший из худших
Фантастика:
городское фэнтези
попаданцы
аниме
6.00
рейтинг книги
Лучший из худший 3

Штурмовик из будущего 3

Политов Дмитрий Валерьевич
3. Небо в огне
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Штурмовик из будущего 3

Последний попаданец 2

Зубов Константин
2. Последний попаданец
Фантастика:
юмористическая фантастика
попаданцы
рпг
7.50
рейтинг книги
Последний попаданец 2

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Безумный Макс. Поручик Империи

Ланцов Михаил Алексеевич
1. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
7.64
рейтинг книги
Безумный Макс. Поручик Империи

Вдова на выданье

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Вдова на выданье