Чтение онлайн

на главную - закладки

Жанры

Шрифт:

55

Рис. I-9. Строение нейронов и глиальных клеток.

аимпрегнированные нейроны коры головного мозга человека. При такой окраске виден примерно 1 нейрон из 1000, что позволяет рассмотреть его отростки; б глиальные клетки из мозга человека; в строение нейрона и его аксона, закрытого глиальными клетками.

56

характерные структурные элементы нервной системы объединены в сети и в специализированные структуры

ганглии

или мозг, а их отростки образуют периферические нервы.

В нервных клетках — нейронах — обычно можно выделить клеточное тело, дендриты и аксон (см. рис. I-9). Тело содержит ядро и биохимический аппарат синтеза молекул, необходимых для жизнедеятельности клетки. Обычно тело нейрона имеет округлую, веретеновидную или пирамидальную форму. Дендриты представляют собой тонкие отростки, которые многократно ветвятся в непосредственной близости от тела клетки. Вокруг него образуется ветвистое дерево. Дендриты формируют ту основную физическую поверхность, на которую поступают идущие к данному нейрону сигналы. Аксоны распространяются далеко от тела клетки. Их длина варьирует от 1 мм до 1,5 м, что позволяет аксонам выполнять функции линий связи между телом клетки и далеко расположенным органом-мишенью или отделом мозга. По аксону проходят сигналы, генерируемые в теле данной клетки. Аксон отличается от дендритов как по строению, так и по свойствам наружной мембраны. Большинство аксонов длиннее и тоньше дендритов и имеют отличный от них характер ветвления. Отростки дендритов в основном группируются вокруг клеточного тела, тогда как отростки аксонов располагаются на конце волокна, в том месте, где аксон взаимодействует с другими нейронами или органами-мишенями.

Кроме нейронов, в нервной системе есть и другие специализированные клетки, которые не выполняют перечисленных нервных функций. Это клетки глии. Глиальные клетки не могут генерировать или обрабатывать информационные сигналы. В их задачу входят снабжение нейронов соединениями, необходимыми для нормального метаболизма, отведение продуктов катаболизма и обеспечение барьерных функций между мозгом и кровеносной системой. Кроме этого, глиальные клетки выполняют функции макрофагов, лимфоцитов и других клеток кровеносной и лимфоидной систем. Нейроглия выполняет механическую функцию и изолирует электрохимически активные волокна отдельных нервных волокон внутри мозга. Оболочки вокруг отростков нейронов состоят из клеток нейроглии, что позволяет стабилизировать ионную среду и увеличивать скорость проведения нервного сигнала (рис. I-10; I-11).

В головном мозге изолирующие функции выполняет олигодендроглия. Она происходит из нейроэктодермы, но отличается от нейронов тем, что не генерирует никаких сигналов, а специализируется на изолирующих функциях. Каждая клетка олигодендроглии охватывает сразу несколько отростков нейронов (см. рис. I-9). Олигодендроглия окружает отростки нейронов, тогда как другие глиальные клетки

57

Рис. I-10. Основные компоненты гематоэнцефалического барьера головного мозга и периферической нервной системы.

Головной мозг изолирован от кровеносной системы трофическими глиальными клетками (зелёные), олигодендроглией и шванновскими клетками. Спинномозговая жидкость фильтруется через эпендимные клетки нейрального происхождения.

58

изолируют тела нейронов. Глиальные клетки выполняют несколько функций. Одна из барьерных функций — это изоляция нейронов и их отростков от соприкосновения с кровеносным руслом. Между кровеносными капиллярами и нейронами находятся изолирующие клетки глии. В их функции входят как поддержание целостности гематоэнцефалического барьера, так и питание нейронов. Через эти клетки проходит основной поток веществ и кислорода, необходимого для сохранения активности мозга. Этот глиальный барьер непроницаем для большинства органических соединений. Их перенос к нейронам осуществляется под контролем рецепторных белков мембран глиальных клеток и нейронов. Такой активный фильтр препятствует случайному движению любых соединений как в мозг, так и из него. Через глиальные клетки осуществляется перенос веществ, подвергшихся катаболизму внутри нейронов, поэтому поток соединений через глиальную часть гематоэнцефалического барьера двунаправленный. В мозг поступают кислород и питательные вещества, а из него отводятся продукты катаболизма. Этот поток крайне интенсивен, поскольку у млекопитающих может достигать 25% общего метаболизма организма. Столь высокий уровень обмена предусматривает высокую проницаемость барьера при невероятно эффективной избирательности. Эти функции структурно обеспечены соотношением количества глиальных клеток и нейронов. Как правило, каждый нейрон обслуживает примерно 15-50 глиальных клеток, которые и обеспечивают необходимый и избирательный поток компонентов, необходимых для поддержания жизни нервной клетки.

Надо отметить, что изолированность нервной системы двунаправленная.

Глиальные клетки препятствуют попаданию продуктов, появляющихся при гибели нейронов, и в мозг, и в кровеносную систему. После гибели нейрона такие продукты формируют вокруг него своеобразный саркофаг из своих тел. Это препятствует попаданию продуктов аутолиза в межклеточное пространство. После окончательного распада нейрона остаётся только контур из тел глиальных клеток, формировавших саркофаг, а затем исчезает и он. Появляются своеобразные «тени» — пустые межклеточные участки, напоминающие форму погибших клеток. Гематоэнцефалический барьер мозга построен не только из глиальные клеток. Его функции выполняют и эпендимные клетки, выстилающие поверхность желудочков и сосудистое сплетение (см. рис. I-10; I-11). Эти клетки в зоне сосудистого сплетения образуют плотный слой, который препятствует проникновению через межклеточное пространство любых веществ и соединений. Через слой этих клеток в сосудистом

59

Рис. I-11. Срезы мозга и сосудистого сплетения (стрелки), расположенного в желудочках мозга различных позвоночных. Микрофотографии.

Спинномозговая жидкость фильтруется через эпендимные клетки нейрального происхождения. При низком кровотоке проницаемость стенок сосудистого сплетения невысока, но его площадь очень большая. У млекопитающих при высоком давлении крови сосудистое сплетение имеет крайне небольшие размеры.

60

сплетении головного мозга происходит ультрафильтрация воды и ионов кальция, натрия, хлора, марганца, калия и магния. Вода и растворы электролитов извлекаются из плазмы крови. В результате кровь лишается части воды и повышает свою вязкость. Накапливающийся в желудочках фильтрат обычно называют спинномозговой жидкостью. Она проходит через желудочки, стенки мозга и спускается по дорсальной поверхности вдоль спинного мозга, затем поднимается вверх и собирается под мозговыми оболочками в зонах особых расширений. Из них спинномозговая жидкость поступает в специальные зоны мозговых оболочек, которые называются пахионовыми грануляциями. Через грануляции спинномозговая жидкость возвращается в венозное русло. Надо отметить, что спинномозговая жидкость поступает в головной мозг активно, поскольку артериальное давление в приносящих мозговых сосудах довольно велико, а возвращается в венозное русло уже пассивно — по градиенту концентрации. Осмотические силы, действующие в момент извлечения спинномозговой жидкости из-под оболочек мозга, не всегда могут уравновесить непрерывный приток этой жидкости через сосудистые сплетения желудочков. Это приводит к динамическим нарушениям и повышению давления жидкости в желудочках мозга.

Спинномозговая жидкость меняется в головном мозге с высокой скоростью. У человека, исследованного

лучше других животных, при пассивном образе жизни вся вода организма проходит через сосудистое сплетение за 10-12 ч, а при физической нагрузке — за 7 ч. Этот достаточно большой поток жидкости обеспечивает нейроны одним из важнейших факторов жизнедеятельности — растворами электролитов. Они необходимы при кодировке, генерации и передаче электрохимических сигналов между отдельными нервными клетками. Нарушения электролитного баланса мозга ставят больше проблем, чем недостаток питания нервных клеток. Для контроля за электролитным балансом мозга в эволюции сложилась специальная система, начинающаяся с осморецепторов, расположенных в прижелудочковых стенках промежуточного мозга. Эти клетки реагируют на изменение осмотического баланса в спинномозговой жидкости. Они вызывают фантомные ощущения сухости во рту, стимулируют выработку антидиуретического гормона, стимулирующего адсорбцию воды в почках, и запускают питьевое поведение. Возникновение этого сложного механизма автономной регуляции осмотического баланса только подчёркивает его функциональную важность для мозга. В этой системе снабжения мозга растворами электролитов нет никаких прямых контактов между нейронами и клетками иммунной системы. Граница непроницаема для органических соединений всего организма.

61

Следует отметить, что у позвоночных сосудистое сплетение различается по размерам (см. рис. I-11). У рыб и амфибий оно выглядит непропорционально большим, а у млекопитающих — чрезвычайно маленьким. В контексте рассуждений о скорости обмена спинномозговой жидкости такие различия кажутся необъяснимыми (Савельев, 2001). На самом деле причины таких морфологических различий вполне понятны. Скорость кровотока в сосудистом сплетении у птиц и млекопитающих намного выше, чем у рептилий, амфибий, хрящевых и костистых рыб, поэтому достаточный уровень обмена спинномозговой жидкости у холоднокровных обеспечивается большей площадью поверхности сосудистого сплетения. Отношение площадь поверхности сосудистого сплетения/объём мозга у низших позвоночных в несколько раз больше, чем у птиц или млекопитающих. Известны и «гипертрофированные» исключения из этого правила, например у бурого протоптера (Protopterus annectens) сосудистое сплетение закрывает собой почти всю дорсальную поверхность мозга.

Поделиться:
Популярные книги

И вспыхнет пламя

Коллинз Сьюзен
2. Голодные игры
Фантастика:
социально-философская фантастика
боевая фантастика
9.44
рейтинг книги
И вспыхнет пламя

Амазония

Роллинс Джеймс
101. Книга-загадка, книга-бестселлер
Приключения:
прочие приключения
9.34
рейтинг книги
Амазония

В зоне особого внимания

Иванов Дмитрий
12. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
В зоне особого внимания

Девочка-лед

Джолос Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Девочка-лед

Последняя Арена 2

Греков Сергей
2. Последняя Арена
Фантастика:
рпг
постапокалипсис
6.00
рейтинг книги
Последняя Арена 2

Измена. Тайный наследник

Лаврова Алиса
1. Тайный наследник
Фантастика:
фэнтези
5.00
рейтинг книги
Измена. Тайный наследник

Убивать чтобы жить 2

Бор Жорж
2. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 2

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Граф Суворов 7

Шаман Иван
7. Граф Суворов
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Граф Суворов 7

Золушка по имени Грейс

Ром Полина
Фантастика:
фэнтези
8.63
рейтинг книги
Золушка по имени Грейс

Черный Маг Императора 9

Герда Александр
9. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 9

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Имя нам Легион. Том 11

Дорничев Дмитрий
11. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 11

Дурашка в столичной академии

Свободина Виктория
Фантастика:
фэнтези
7.80
рейтинг книги
Дурашка в столичной академии