Производство химических волокон

на главную - закладки

Жанры

Поделиться:

Производство химических волокон

Производство химических волокон
5.00 + -

рейтинг книги

Шрифт:

Введение.

Производство химических волокон является наиболее перспективной, быстроразвивающейся отраслью промышленности полимерных материалов. По прогнозам в 2010 году мировое производство их достигнет 85млн. тонн. B последнее время наряду с разработкой и совершенствованием технологических процессов получения волокон общего назначения большое внимание уделяется и модифицированным химическим волокнам, обладающим специфическими свойствами – волокнам специального назначения 2, 3, 4-6). Из этой группы существенное внимание уделяется ионообменным материалам, которые благодаря

особенностям строения(4структуры) имеют большое практическое значение. Иониты могут применяться в виде тканей, волокон, гранул, мембран, стержней и т.д.

Ионообменные материалы используются в процессах фракционирования, выделения и очистки органических и минеральных соединений, обессоливания и умягчения воды. Преимущества ионного обмена заключается в простоте метода, а в ряде случаев и его эффективности. Развитие способов сорбционной очистки и разделения веществ приводит к повышению интереса в изучении процесса ионного обмена, а также к изысканию новых перспективных сорбентов. Специальные свойства могут быть приданы принципиально всем материалам, выпускаемых промышленностью.

Темой данной работы явился синтез карбоксилсодержащего полимера на основе винилацетата и итаконовой кислоты для получения ионообменных материалов.

1. Теоретические основы радикальной сополимеризации.

Полимеры, используемые для ионообменных целей, получают реакцией сополимеризации двух или большего количества мономеров (7), Процесс сополимеризации может быть осуществлен: в блоке (массе) жидких мономеров в присутствии инициатора. Вязкость системы постепенно возрастаете, в результате образуется сплошная масса твердого полимера; в растворе:

а) мономеры и образующийся сополимер растворимы в растворителе. В результате образуется раствор полимера. Способ называется лаковым.

б) мономеры растворимы, а образующийся сополимер нерастворимый в растворителе и выпадает в осадок.

В гетерофазной среде, когда необходима дисперсная среда эмульгатор:

а) эмульсионная или латексная

б) суспензионная или бисерная

При сополимеризации получается продукт, в котором мономерные единицы распределены вдоль каждой полимерной цепи. Физические свойства сополимеров в основном, определяются количеством и распределением мономерных единиц вдоль цепи.

Радикальная полимеризация

Реакция полимеризации или сополимеризации винилацетата протекает по методу радикальной полимеризации.

Радикальная полимеризация проходит с образованием свободных радикалов, при этом необходимым является наличие инициатора (8).

При полимеризации происходит распад инициатора с образованием свободных радикалов и молекула винилацета взаимодействует с ним. Процесс образования каждой макромолекулы включает несколько элементарных актов:

а) инициирование реакции;

б) рост цепи;

в) обрыв роста цепи.

г) Наиболее длительным, а, следовательно, и определяющим общую скорость полимеризации является инициирование. Распад инициатора может протекать под действием температуры. При температуре 70°С исходит распад парофора с образованием свободных радикалов:

б) Реакция

роста цепи состоит в присоединении молекул мономера к макрорадикалу. Рост каждой макромолекулы на ранних стадиях полимеризации длится доли секунды, и константа скорости реакции роста на этих стадиях остается постоянной:

в) Прекращение роста макрорадикалов может происходить:

1) в результате обрыва кинетической цепи

2) при применении ингибиторов

В первом случае передачи цепи прекращение роста макрорадикалов не сопровождается уменьшением числа активных центров в системе. Насыщение макрорадикала происходит вследствие присоединения атомов или групп, отщепляющихся от других молекул (мономера, полимера, растворителя, примесей). В результате образуется насыщенная макромолекула полимера и свободный радикал, начинающий новую мономерную цепь. Таким образом, при передаче цепи прекращение роста макромолекулы не наблюдается.

Обрыв цепи – это процесс, приводящий к насыщению валентности конечного звена макрорадикала и не сопровождающийся образованием нового радикала. Обрыв может быть осуществлен следующими путями:

а) рекомбинацией – происходит в результате соединения двух макрорадикалов с образованием одной макромолекулы;

б) диспропорционированием – происходит в результате отщепления атома водорода от конечного звена одного из макрорадикалов и перехода его к другому макрорадикалу с насыщением его свободной валентности. В этом случае образуются две макромолекулы, причем одна имеет в конечном звене ненасыщенную связь;

в) ингибитор реагирует с начальным радикалом или макрорадикалом, обрывая цепную реакцию. При этом ингибитор входит в состав макро молекулы.

Роста требований к текстильным материалам и материалам, применяемым в технике, привел к улучшению существующих и получению новых материалов, что достигается путем модификации (9). Немалое значение в настоящее время имеют ионообменные материалы.

Для улучшения накрашиваемости волокон основными красителями в молекулу ПАН вводятся мономеры, содержащие кислотные группы. К ним относятся итаконовая кислота (10,11), акриловая и метакриловая кислоты.

С расширением использования ионообменных материалов и увеличением требований к ним, необходимым становится получение новых синтетических ионообменников. В частности, катионообменники могут быть получены путем введения максимального количества кислотных групп. Японскими исследователями был получен сополимер итаконовой кислоты с менее 20% ванильного мономера. В среде органического растворителя с диэлектрической постоянной менее 40 (диметилформамид, диоксан, ацетон) при давлении больше 2000 с использованием радикального инициатора (12). Новое волокно с ионообменными свойствами получено во ВНИИВе на основе ПАН, содержащее -СООН группы с обменной емкость 5-7мг/г (13).

12

Книги из серии:

Без серии

Комментарии:
Популярные книги

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила

Эволюционер из трущоб. Том 6

Панарин Антон
6. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Эволюционер из трущоб. Том 6

Надуй щеки!

Вишневский Сергей Викторович
1. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки!

Досье Дрездена. Книги 1 - 15

Батчер Джим
Досье Дрездена
Фантастика:
фэнтези
ужасы и мистика
5.00
рейтинг книги
Досье Дрездена. Книги 1 - 15

Слабость Виктории Бергман (сборник)

Сунд Эрик Аксл
Лучший скандинавский триллер
Детективы:
триллеры
прочие детективы
6.25
рейтинг книги
Слабость Виктории Бергман (сборник)

Иоанн Антонович

Сахаров Андрей Николаевич
10. Романовы. Династия в романах
Проза:
историческая проза
5.00
рейтинг книги
Иоанн Антонович

Измена. Право на обман

Арская Арина
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на обман

Жена воина, или любовь на выживание

Звездная Елена
3. Право сильнейшего
Фантастика:
фэнтези
8.98
рейтинг книги
Жена воина, или любовь на выживание

Камень Книга седьмая

Минин Станислав
7. Камень
Фантастика:
фэнтези
боевая фантастика
6.22
рейтинг книги
Камень Книга седьмая

Придворный. Гоф-медик

Дронт Николай
1. Придворный
Фантастика:
фэнтези
6.83
рейтинг книги
Придворный. Гоф-медик

Хроники Темных Времен (6 романов в одном томе)

Пейвер Мишель
Хроники темных времен
Фантастика:
фэнтези
8.12
рейтинг книги
Хроники Темных Времен (6 романов в одном томе)

Сдам угол в любовном треугольнике

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сдам угол в любовном треугольнике

Красноармеец

Поселягин Владимир Геннадьевич
1. Красноармеец
Фантастика:
боевая фантастика
попаданцы
4.60
рейтинг книги
Красноармеец

Игра престолов

Мартин Джордж Р.Р.
1. Песнь Льда и Огня
Фантастика:
фэнтези
9.48
рейтинг книги
Игра престолов