Чтение онлайн

на главную - закладки

Жанры

Неизвестно

Шрифт:

?- пуск.

Назад | Содержание | Вперёд

Назад | Содержание | Вперёд

16. 3. Простая программа для автоматического докаэательства теорем

В настоящем разделе мы реализуем простую программу для

автоматического доказательства

теорем в виде системы, управляемой образцами. Эта программа будет основана на

принципе резолюции

– популярном методе, обычно используемом в машинном доказательстве теорем. Мы ограничимся случаем

пропозициональной

логики

, поскольку нашей целью будет дать всего лишь простую иллюстрацию используемого принципа. На самом деле, принцип резолюции можно легко обобщить на случай исчисления высказываний первого порядка (с применением логических формул, содержащих переменные). Базовый Пролог можно рассматривать как частный случай системы доказательства теорем, основанной на принципе резолюции.

Задачу доказательства теорем можно сформулировать так: дана формула, необходимо показать, что эта формула является теоремой, т. е. она верна всегда, независимо от интерпретации встречающихся в ней символов. Например, утверждение, записанное в виде формулы

р v ~ р

и означающее "р или не р", верно всегда, независимо от смысла утверждения р.

Мы будем использовать в качестве операторов следующие символы:

~ отрицание, читается как "не"

& конъюнкцию, читается как "и"

v дизъюнкцию, читается как "или"

=> импликацию, читается как "следует"

Согласно правилам предпочтения операторов, оператор "не" связывает утверждения сильнее, чем "и", "или" и "следует".

Метод резолюции предполагает, что мы рассматриваем отрицание исходной формулы и пытаемся показать, что полученная формула противоречива. Если это действительно так, то исходная формула представляет собой тавтологию. Таким образом, основную идею можно сформулировать так: доказательство противоречивости формулы с отрицанием эквивалентно доказательству того, что исходная формула (без отрицания) есть теорема (т. е. верна всегда). Процесс, приводящий к искомому противоречию, состоит из отдельных шагов, на каждом из которых применяется резолюция.

Давайте проиллюстрируем этот принцип на примере. Предположим, что мы хотим доказать, что теоремой является следующая пропозициональная формула:

(а => b) & (b => с) => (а => с)

Смысл этой формулы таков: если из а следует b и из b следует с, то из а следует с.

Прежде чем начать применять процесс резолюции ("резолюционный процесс"), необходимо представить

отрицание нашей формулы в наиболее приспособленной для этого форме. Такой формой является

конъюнктивная нормальная форма

, имеющая вид

(р1 v p2 v ...) & (q1 v q2 v ...)

& (r1 v r2 v ...) & ...

Здесь рi, qi, ri

элементарные утверждения

или их отрицания. Конъюнктивная нормальная форма есть конъюнкция членов, называемых

дизъюнктами

, например (

p1

v

p2

v ...) - это дизъюнкт.

Любую пропозициональную формулу нетрудно преобразовать в такую форму. В нашем случае это делается следующим образом. У нас есть исходная формула

(а => b) & (b => с) => (а => с)

Ее отрицание имеет вид

~ ( (а => b) & (b => с) => (а => с) )

Для преобразования этой формулы в конъюнктивную нормальную форму можно использовать следующие известные правила:

(1) х => у эквивалентно v у

(2) ~(x v y) эквивалентно &

(3) ~(х & у) эквивалентно v

(4) ~( ) эквивалентно х

Применяя правило 1, получаем

~ ( ~ ( (a => b) & (b => с)) v (а => с) )

Далее, правила 2 и 4 дают

(а => b) & (b => с) & ~(а => с)

Трижды применив правило 1, получаем

(~ а v b) & (~b v с) & ~( v с)

Поделиться:
Популярные книги

Усадьба леди Анны

Ром Полина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Усадьба леди Анны

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь

Светлая тьма. Советник

Шмаков Алексей Семенович
6. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Светлая тьма. Советник

Двойник Короля

Скабер Артемий
1. Двойник Короля
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Двойник Короля

Его нежеланная истинная

Кушкина Милена
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Его нежеланная истинная

Последний Паладин. Том 2

Саваровский Роман
2. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 2

Измена. Наследник для дракона

Солт Елена
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Измена. Наследник для дракона

Идеальный мир для Лекаря 9

Сапфир Олег
9. Лекарь
Фантастика:
боевая фантастика
юмористическое фэнтези
6.00
рейтинг книги
Идеальный мир для Лекаря 9

Мастер темных Арканов

Карелин Сергей Витальевич
1. Мастер темных арканов
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Мастер темных Арканов

Адвокат империи

Карелин Сергей Витальевич
1. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
фэнтези
5.75
рейтинг книги
Адвокат империи

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Вечный. Книга II

Рокотов Алексей
2. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга II

Законы Рода. Том 3

Flow Ascold
3. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 3

Наследник

Шимохин Дмитрий
1. Старицкий
Приключения:
исторические приключения
5.00
рейтинг книги
Наследник