Prolog
Шрифт:
энн– это голова, а хвостом является список
[ теннис, том, лыжи ]
В общем случае, головой может быть что угодно (любой прологовский объект, например, дерево или переменная); хвост же должен быть списком. Голова соединяется с хвостом при помощи специального функтора. Выбор этого функтора зависит от конкретной реализации Пролога; мы будем считать, что это точка:
.( Голова, Хвост)
Поскольку Хвост– это список, он либо пуст, либо имеет свои
.( энн, .( теннис, .( том, .( лыжи, [ ] ) ) ) )
На рис. 3.1 изображена соответствующая древовидная структура. Заметим, что показанный выше пример содержит пустой список [ ]. Дело в том, что самый последний хвост является одноэлементным списком:
[ лыжи ]
Хвост этого списка пуст
[ лыжи ] = .( лыжи, [ ] )
Рассмотренный пример показывает, как общий принцип структуризации объектов данных можно применить к спискам любой длины. Из нашего примера также видно, что такой примитивный способ представления в случае большой глубины вложенности подэлементов в хвостовой части списка может привести к довольно запутанным выражениям. Вот почему в Прологе предусматривается более лаконичный способ изображения списков, при котором они записываются как последовательности элементов, заключенные в квадратные скобки. Программист может использовать оба способа, но представление с квадратными скобками, конечно, в большинстве случаев пользуется предпочтением. Мы, однако, всегда будем помнить, что это всего лишь косметическое улучшение и что во внутреннем представлении наши списки выглядят как деревья. При выводе же они автоматически преобразуются в более лаконичную форму представления. Так, например, возможен следующий диалог:
?- Список1 = [а, b, с],
Список2 = (a, .(b, .(c,[ ]) ) ).
Список1 = [а, b, с]
Список2 = [а, b, с]
?- Увлечения1 = .( теннис, .(музыка, [ ] ) ),
Увлечения2 = [лыжи, еда],
L = [энн, Увлечения1, том, Увлечения2].
Увлечения1 = [теннис, музыка]
Увлечения2 = [лыжи, еда]
L = [энн, [теннис, музыка], том, [лыжи, еда]]
Рис. 3. 1. Представление списка [энн, теннис, том, лыжи] в виде дерева.
Приведенный пример также напоминает вам о том, что элементами списка могут быть любые объекты, в частности тоже списки.
На
L = [а, b, с]
Тогда можно написать:
Хвост = [b, с] и L = .(а, Хвост)
Для того, чтобы выразить это при помощи квадратных скобок, в Прологе предусмотрено еще одно расширение нотации для представления списка, а именно вертикальная черта, отделяющая голову от хвоста:
L = [а | Хвост]
На самом деле вертикальная черта имеет более общий смысл: мы можем перечислить любое количество элементов списка, затем поставить символ " | ", а после этого - список остальных элементов. Так, только что рассмотренный пример можно представить следующими различными способами:
[а, b, с] = [а | [b, с]] = [a, b | [c]] = [a, b, c | [ ]]
Подытожим:
Список - это структура данных, которая либо пуста, либо состоит из двух частей: головы и хвоста. Хвост в свою очередь сам является списком.
Список рассматривается в Прологе как специальный частный случай двоичного дерева. Для повышения наглядности программ в Прологе предусматриваются специальные средства для списковой нотации, позволяющие представлять списки в виде
[ Элемент1, Элемент2, ... ]
или
[ Голова | Хвост ]
или
[ Элемент1, Элемент2, ... | Остальные]
Назад | Содержание | Вперёд
Назад | Содержание | Вперёд
3. 2. Некоторые операции над списками
Списки можно применять для представления множеств, хотя и существует некоторое различие между этими понятиями: порядок элементов множества не существенен, в то время как для списка этот порядок имеет значение; кроме того, один н тот же объект может встретиться в списке несколько раз. Однако наиболее часто используемые операции над списками аналогичны операциям над множествами. Среди них
проверка, является ли некоторый объект элементом списка, что соответствует проверке объекта на принадлежность множеству;
конкатенация (сцепление) двух списков, что соответствует объединению множеств;
добавление нового объекта в список или удаление некоторого объекта из него.
В оставшейся части раздела мы покажем программы, реализующие эти и некоторые другие операции над списками.
3. 2. 1. Принадлежность к списку
Мы представим отношение принадлежности как