Prolog
Шрифт:
Множество встроенных процедур сильно зависит от конкретной реализации Пролога. Однако процедуры, обсуждаемые в данной главе, имеются во многих реализациях. Различные реализации могут иметь свои наборы дополнительных средств.
7. 1. Проверка типов термов
7. 1. 1. Предикаты var, nоnvar, atom, integer, atomic
Термы бывают разных типов: переменные, целые числа, атомы и т.д. Если терм - переменная, то в некоторый момент выполнения программы он может оказаться
Z is X + Y
Перед вычислением этой цели необходимо, чтобы Х и Y были конкретизированы целыми числами. Если у нас нет уверенности в том, что Х и Y действительно конкретизированы целыми числами, то перед выполнением арифметического действия нужно проверить это программно.
Для этого следует воспользоваться встроенным предикатом integer (целое). Предикат integer( X) принимает значение истина, если Х - целое или если Х - переменная, имеющая целое значение. Будем говорить в этом случае, что Х "обозначает" целое. Цель для сложения Х и Y можно тогда "защитить" такой проверкой переменных Х и Y:
. . ., integer( X), integer( Y), Z is X + Y, . . .
Если неверно, что X и Y оба являются целыми, то система и не будет пытаться их сложить. Таким образом, цели integer "охраняют" цель Z is Х + Y от бессмысленного вычисления.
Встроенные предикаты этого типа таковы: var (переменная), nonvar (непеременная), atom (атом), integer (целое), atomic (атомарный). Они имеют следующий смысл:
var( X)
Эта цель успешна, если Х в текущий момент - не конкретизированная переменная.
nonvar( X)
Эта цель успешна, если Х - терм, отличный от переменной, или если Х - уже конкретизированная переменная.
atom( X)
Эта цель истинна, если Х обозначает атом.
integer( X)
Цель истинна, если Х обозначает целое.
atomic( X)
Цель истинна, если Х обозначает целое или атом.
Следующие примеры вопросов к пролог-системе иллюстрируют применение этих встроенных предикатов:
?- var( Z), Z = 2.
Z = 2
?- Z = 2, var( Z).
no
?- integer( Z), Z = 2.
no
?- Z = 2, integer( Z), nonvar( Z).
Z = 2
?- atom( 22).
no
?- atomic( 22).
yes
?- atom( ==>).
yes
?- atom( p( 1) ).
no
Необходимость
счетчик( А, L, N)
где А– атом, L– список и N– количество вхождений этого атома. В качестве первой попытки можно было бы определить счетчик так:
счетчик( _, [ ], 0).
счетчик( A, [A | L], N) :- !,
счетчик( A, L, N1),
% N1 - число вхождений атома в хвост
N is N1 + 1.
счетчик( А, [ _ | L], N) :-
счетчик( A, L, N).
Теперь на нескольких примерах посмотрим, как эта процедура работает:
?- счетчик( а, [а, b, а, а], N).
N = 3
?- счетчик( a, [a, b, X, Y], Na).
Na = 3
. . .
?- счетчик( b, [a, b, X, Y], Nb).
Nb = 3
. . .
?- L=[a, b, Х, Y], счетчик( а, L, Na), счетчик( b, L, Nb).
Na = 3
Nb = 1
X = a
Y = a
. . .
В последнем примере как X, так и Y после конкретизации получили значение а, и поэтому Nb оказалось равным только 1, однако мы хотели не этого. Нас интересовало количество реальных появлений конкретного атома, а вовсе не число термов, сопоставимых с этим атомом. В соответствии с этим более точным определением отношения счетчик мы должны теперь проверять, является ли голова списка атомом. Усовершенствованная программа выглядит так: