Чтение онлайн

на главную - закладки

Жанры

Неизвестно

Шрифт:

вглубину2( Верш, [Верш], _ ) :-

цель( Верш).

вглубину2( Верш, [Верш | Реш], МаксГлуб) :-

МаксГлуб > 0,

после( Верш, Верш1),

Maкс1 is МаксГлуб - 1,

вглубину2( Верш1, Реш, Maкс1).

Рис. 11. 8. Программа

поиска в глубину с ограничением по глубине.

Для того, чтобы предотвратить бесцельное блуждание по бесконечным ветвям, мы можем добавить

в базовую процедуру поиска в глубину еще одно усовершенствование, а именно, ввести

ограничение на глубину поиска

. Процедура поиска в глубину будет тогда иметь следующие аргументы:

вглубину2( Верш, Решение, МаксГлуб)

Не разрешается вести поиск на глубине большей, чем МаксГлуб. Программная реализация этого ограничения сводится к уменьшению на единицу величины предела глубины при каждом рекурсивном обращений к вглубину2 и к проверке, что этот предел не стал отрицательным. В результате получаем программу, показанную на рис. 11.8.

Упражнения

11. 1. Напишите процедуру поиска в глубину (с обнаружением циклов)

вглубину1( ПутьКандидат, Решение)

отыскивающую решающий путь Решение как продолжение пути ПутьКандидат. Оба пути представляйте списками вершин, расположенных в обратном порядке так, что целевая вершина окажется в голове списка Решение.

Посмотреть ответ

11. 2. Напишите процедуру поиска в глубину, сочетающую в себе обнаружение циклов с ограничением глубины, используя рис. 11.7 и 11.8.

11. 3. Проведите эксперимент по применению программы поиска в глубину к задаче планирования в "мире кубиков" (рис. 11.1).

11. 4. Напишите процедуру

отобр( Ситуация)

для отображения состояния задачи "перестановки кубиков". Пусть Ситуация– это список столбиков, а столбик, в свою очередь, - список кубиков. Цель

отобр( [ [a], [e, d], [с, b] ] )

должна отпечатать соответствующую ситуацию, например так:

е с

a d b

================

Назад | Содержание | Вперёд

Назад | Содержание | Вперёд

11. 3. Поиск в ширину

В противоположность поиску в глубину стратегия поиска в ширину предусматривает переход в первую очередь к вершинам, ближайший к стартовой вершине. В результате процесс поиска имеет тенденцию развиваться более в ширину, чем в глубину, что иллюстрирует рис. 11.9.

Поиск в ширину программируется не так легко, как поиск в глубину. Причина состоят в том, что

Рис. 11. 9.

Простое пространство состояний: а– стартовая вершина,

f и j - целевые вершины. Применение стратегии поиска в ширину

дает следующий порядок прохода по вершинам: а, b, c, d, e, f. Более

короткое решение [a, c, f] найдено раньше, чем более длинное

[а, b, e, j]

нам приходится сохранять все множество альтернативных вершин-кандидатов, а не только одну вершину, как при поиске в глубину. Более того, если мы желаем получить при помощи процесса поиска решающий путь, то одного множества вершин недостаточно. Поэтому мы будем хранить не множество вершин-кандидатов, а множество путей– кандидатов. Таким образом, цель

вширину( Пути, Решения)

истинна только тогда, когда существует путь из множества кандидатов Пути, который может быть продолжен вплоть до целевой вершины. Этот продолженный путь и есть Решение.

11. 3. 1. Списковое представление множества кандидатов

В нашей первой реализации этой идеи мы будем использовать следующее представление для множества

решить( Старт, Решение) :-

вширину( [ [Старт] ], Решение).

вширину( [ [Верш | Путь] | _ ], [Верш | Путь] ) :-

цель( Верш).

вширину( [ [В | Путь] | Пути], Решение ) :-

bagof( [B1, В | Путь ],

( после( В, В1), not принадлежит( В1, [В | Путь])),

НовПути),

% НовПути - ациклические продолжения пути [В | Путь]

конк( Пути, НовПути, Пути1), !,

вширину( Путь1, Решение);

вширину( Пути, Решение).

% Случай, когда у В нет преемника

Рис. 11. 10. Реализации поиска в ширину.

путей-кандидатов. Само множество будет списком путей, а каждый путь - списком вершин, перечисленных в обратном порядке, т. е. головой списка будет самая последняя из порожденных вершин, а последним элементом списка будет стартовая вершина. Поиск начинается с одноэлементного множества кандидатов

Поделиться:
Популярные книги

Дракон с подарком

Суббота Светлана
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
6.62
рейтинг книги
Дракон с подарком

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Мастер клинков. Начало пути

Распопов Дмитрий Викторович
1. Мастер клинков
Фантастика:
фэнтези
9.16
рейтинг книги
Мастер клинков. Начало пути

Имя нам Легион. Том 8

Дорничев Дмитрий
8. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 8

Измена. Право на счастье

Вирго Софи
1. Чем закончится измена
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на счастье

Начальник милиции 2

Дамиров Рафаэль
2. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции 2

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4

Измена. Мой заклятый дракон

Марлин Юлия
Любовные романы:
любовно-фантастические романы
7.50
рейтинг книги
Измена. Мой заклятый дракон

Предатель. Цена ошибки

Кучер Ая
Измена
Любовные романы:
современные любовные романы
5.75
рейтинг книги
Предатель. Цена ошибки

Звездная Кровь. Изгой

Елисеев Алексей Станиславович
1. Звездная Кровь. Изгой
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Звездная Кровь. Изгой

Рождение победителя

Каменистый Артем
3. Девятый
Фантастика:
фэнтези
альтернативная история
9.07
рейтинг книги
Рождение победителя

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Камень. Книга шестая

Минин Станислав
6. Камень
Фантастика:
боевая фантастика
7.64
рейтинг книги
Камень. Книга шестая

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь