Чтение онлайн

на главную - закладки

Жанры

Путешествие от частицы до Вселенной. Математика газовой динамики
Шрифт:

* * *

Однако в этих поисках родилось понятие энтропии. Физики того времени осознали, что в любом процессе во Вселенной энергия стремится распределиться таким образом, что всегда в итоге оказывается меньше полезной энергии, чем было вначале. Энтропия системы — это мера рассеивания ее энергии. Поскольку энергия стремится рассеиваться, как мы заметили в примере с двигателями, можно предположить, что энтропия в любом процессе стремится расти. Так родился второй закон термодинамикиf который гласит: суммарная энтропия изолированной системы будет увеличиваться.

Второй закон термодинамики нельзя было вывести из более фундаментальных принципов. Казалось, что само его существование противоречит законам Ньютона, которые не имеют направленности во времени и справедливы как по отношению

к будущему, так и по отношению к настоящему. Иными словами, законы Ньютона воздействуют на такие системы, словно бильярдные шары на поле, и невозможно увидеть запись их столкновения на повторном просмотре. Однако второй закон термодинамики показывает разницу между прошлым и будущим: будущее — это то направление, в котором растет энтропия.

В дальнейшем будет видно, как развивалось понятие энтропии, которая перестала быть инструментом изучения газа и превратилась в один из столпов математической теории информации, а затем была применена к еще более фундаментальным проблемам.

Энтропия и вероятность

В предыдущей главе мы видели, что газ стремится к макросостоянию, для которого характерно наибольшее число микросостояний, совместимых с ним. Это дает нам много информации о макроскопическом состоянии газа. Предположим, что у системы есть три различных возможных макросостояния, из которых у первого — два микросостояния, совместимых с ним, у второго — четыре, а у третьего — 300 тысяч миллионов. Если мы наблюдаем систему в случайно выбранный момент, существует огромная вероятность того, что мы наблюдаем ее в третьем макросостоянии, просто потому что оно имеет намного больше возможностей для возникновения. Можно сказать, что вероятность третьего макросостояния намного больше, чем двух других.

Если мы посчитаем общее число микросостояний, получится:

N = 2 + 4 + 300 000 000 000 = 300 000 000 006.

Вероятность первого состояния равна числу микросостояний (2), разделенному на общее число возможных микросостояний, то есть:

Между тем вероятность третьего равна:

Позже мы увидим, как наиболее вероятные состояния соответствуют более высокой энтропии.

Теперь предположим, что у нас есть газ в коробке, и, используя поршень, мы заставляем все молекулы разместиться в ее верхнем углу, как показано на рисунке.

Если мы уберем поршень, как поведет себя газ? Куда будут двигаться его частицы?

Опыт и здравый смысл говорят нам, что они будут стремиться заполнить весь объем коробки. Это совпадает со вторым законом термодинамики, в котором утверждается, что энергия стремится от большей концентрации к меньшей. Вначале энергия очень концентрированная, поскольку она вся находится в углу коробки; но как только объем расширился, энергия стала меньше. Посмотрим, что гласит модель газа Больцмана.

Для проверки прогноза по модели распределения Больцмана обратим внимание на число микросостояний, которые имеют оба макросостояния: то, которое соответствует расположению газа в верхнем углу коробки, и то, которое соответствует равномерному распределению газа по всему объему. Представим, что молекулы могут занимать только определенные области, располагаясь решеткой. Так мы можем сравнить число микросостояний одной и второй конфигураций. Сделаем огромную по сравнению с молекулой решетку, чтобы расчеты были более понятными, и представим себе, что у коробки только два измерения, то есть квадрат, представленный на фигуре ниже, — это вся коробка.

Предположим,

что наш газ имеет три частицы. В первом случае они будут ограничены верхней левой площадью коробки, отмеченной серым. Как видно, для этой области есть 25 возможных положений для каждой из частиц. Поскольку у нас есть три частицы, которые мы можем расположить где угодно без наложений, общее число микросостояний будет 25·24·23 = 13800.

Теперь обратим внимание на целую коробку. Ее сторона равна 10 единицам, так что общее число возможных позиций равно 100. Общее число микросостояний равно 100·99·98 = 970200. Итак, очевидно, что гораздо больше микросостояний совместимо со второй возможностью, чем с первой. Действительно, мы можем вычислить вероятность того, что газ окажется в верхнем углу. Это будет число совместимых микросостояний, разделенное на общее их число:

Итак, существует 98,6 % вероятности того, что газ займет всю коробку. Если бы мы взяли больше частиц и более мелкую сетку, то получили бы более значительную разницу. Таким образом, модель распределения Больцмана говорит то же самое, что и термодинамика.

Можно задаться вопросом, существует ли какой-нибудь микроскопический способ понять энтропию термодинамики. Энтропия — это величина, которая возрастает в каждом изолированном процессе и дает нам меру разрежения энергии. Можем ли мы найти какую-то величину, которая бы тоже выросла в процессе, который мы только что изучили? Ответ — да: возросло число микросостояний. Если в начале мы насчитывали их 13 800, то в конце — почти миллион. Число микросостояний показывает нам, какова вероятность получения этого макросостояния; кроме того, разумно предположить, что система всегда эволюционирует в сторону наиболее вероятного состояния. Итак, мы можем прийти к выводу, что энтропия и число микросостояний могут быть каким-то образом связаны.

* * *

ЛЮДВИГ БОЛЬЦМАН И АТОМЫ

Людвиг Больцман (1844–1906), портрет которого вы видите рядом с этими строками, был австрийским физиком, который ввел идею, что такие термодинамические явления, как температура, на самом деле — крупномасштабное проявление микроскопического поведения атомов. В то время само существование атомов еще вызывало дискуссии, и многие коллеги ученого отвергали его теорию, считая, что не существует никакого доказательства того, что материя состоит из элементарных частиц.

Больцман покончил жизнь самоубийством в 1906 году — как гласит легенда, из-за того, что научное сообщество отвергло его идеи. На самом деле это было связано с проблемами медицинского характера, а не с научным разочарованием. Через два года после смерти Больцмана Жан Батист Перрен (1870–1942) подтвердил существование атомов с помощью эксперимента над броуновским движением, в котором маленькие частицы пыли хаотично двигались, сталкиваясь с молекулами жидкости.

* * *

К этому же выводу пришел и Больцман, которому удалось доказать, что энтропия пропорциональна логарифму числа микросостояний, умноженному на его известную постоянную. Логарифм обозначается как log и является обратным экспоненте. Например, выражение log3 говорит нам, в какую степень мы должны возвести число 10, чтобы получить 3. Математически энтропия Больцмана выражается следующим образом:

S = k·logW,

Поделиться:
Популярные книги

На границе империй. Том 3

INDIGO
3. Фортуна дама переменчивая
Фантастика:
космическая фантастика
5.63
рейтинг книги
На границе империй. Том 3

На границе империй. Том 5

INDIGO
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
7.50
рейтинг книги
На границе империй. Том 5

Ученичество. Книга 2

Понарошку Евгений
2. Государственный маг
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ученичество. Книга 2

Адвокат вольного города 3

Кулабухов Тимофей
3. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Адвокат вольного города 3

Мымра!

Фад Диана
1. Мымрики
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Мымра!

Пипец Котенку! 2

Майерс Александр
2. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 2

Инкарнатор

Прокофьев Роман Юрьевич
1. Стеллар
Фантастика:
боевая фантастика
рпг
7.30
рейтинг книги
Инкарнатор

Часовая битва

Щерба Наталья Васильевна
6. Часодеи
Детские:
детская фантастика
9.38
рейтинг книги
Часовая битва

Небо для Беса

Рам Янка
3. Самбисты
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Небо для Беса

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Пистоль и шпага

Дроздов Анатолий Федорович
2. Штуцер и тесак
Фантастика:
альтернативная история
8.28
рейтинг книги
Пистоль и шпага

Дракон - не подарок

Суббота Светлана
2. Королевская академия Драко
Фантастика:
фэнтези
6.74
рейтинг книги
Дракон - не подарок

Её (мой) ребенок

Рам Янка
Любовные романы:
современные любовные романы
6.91
рейтинг книги
Её (мой) ребенок

Не грози Дубровскому! Том III

Панарин Антон
3. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том III