Чтение онлайн

на главную - закладки

Жанры

Путешествие в страну микробов
Шрифт:

Выздоровление ребенка в семье Домагка и хорошие результаты клинических испытаний открыли пронтозилу двери целого ряда больниц, где его спасительного действия ожидали многие тяжелобольные.

В исследовании действия пронтозила ученые столкнулись с загадочным явлением. Препарат, убивая болезнетворные бактерии в организме человека или подопытных животных, в лабораторных условиях (в жидкой культуральной среде) не оказывал на них никакого действия. Эту загадку удалось разгадать супругам Трефуэль из Пастеровского института в Париже. Они показали, что в организме человека пронтозил расщепляется на два компонента, один из них — сульфаниламид — обладает бактерицидным действием как в живом организме (in vivo), так и в пробирке (in vitro). Химическая

структура сульфаниламида довольно проста, и его синтез был хорошо известен. Вскоре фармацевтическая промышленность многих стран стала поставлять на рынок именно этот действенный препарат. Но химики на этом не остановились. Они пытались путем химического превращения молекулы сульфаниламида сделать препарат эффективным и против других бактерий.

Английские исследователи Эванс и Филлипс добились в этом направлении первого успеха. В сульфамидной группе (—S02NH2) молекулы сульфаниламида они заменили один атом водорода остатком молекулы пиридина, также лишенной одного атома водорода. Так был получен сульфапиридин. В отношении стрептококков он оказался эффективнее сульфаниламида и, кроме того, убивал пневмококки, вызывающие воспаление легких.

Замещением атома водорода в аминогруппе (—NH2) сульфаниламида тиазольным ядром был получен еще один препарат — сульфатиазол, известный как цибазол (по названию швейцарской фирмы ЦИБА). Сульфатиазол оказался препаратом с более широким спектром антибактериального действия, чем сульфапиридин, и был менее токсичным для человеческого организма. Присоединив к молекуле сульфатиазола еще одну группу атомов, химики получили сукцинил-сульфатиазол — соединение, эффективное в борьбе с возбудителем дизентерии Shigella dysenteriae.

Замещением обоих атомов водорода в аминогруппе другим радикалом было получено еще одно действенное средство против возбудителя дизентерии — сульфагуанидин.

Мы могли бы перечислить десятки сульфаниламидов (отличающихся друг от друга радикалами), которые определяют специфику действия препарата на разные виды бактерий и на человеческий организм. Сегодня химиками получено несколько тысяч различных сульфамидных препаратов. Многие из них сразу же нашли применение в медицине. Только в США в 1943 году фармацевтическая промышленность произвела 3000 т сульфаниламидов, и они были применены при лечении 129 миллионов человек.

Но ученых уже волновала новая проблема. Им хотелось знать, почему сульфаниламиды убивают одни микроорганизмы и оказываются бессильными против других. Ученые узнали о многих интересных фактах, а попутно открыли и новый витамин. Но это уже тема другого рассказа.

В послевоенные годы Домагк продолжал работать над противомикробными препаратами. Ему удалось создать два лекарственных средства против туберкулеза, известных под названием контебен и неоконтебен. Занимался он и проблемой лечения рака. Университеты и научные общества многих государств присвоили ему степень почетного доктора и почетного члена обществ. Этот выдающийся ученый скончался 24 апреля 1964 года. Но остались его работы, и они показывают, как много может сделать наука, поставленная на службу человечеству.

Как достигают цели «волшебные пули»

Лабораторные опыты с сульфаниламидами позволили узнать, каким образом они обезвреживают бактерии.

В отличие от некоторых антибактериальных веществ, таких, например, как дезинфекционные средства, сульфаниламиды не убивают бактерии, они прекращают их размножение.

Бактериостатическое действие сульфаниламидов проявляется в том, что они влияют на ход химических реакций в бактериальных клетках, и это приводит в конце концов к прекращению процесса размножения. А поскольку и бактерии не бессмертны, клетки, переставшие размножаться, через некоторое время погибают.

Но это уже вторичное явление. Исследуя действие сульфаниламидов на ту или иную бактериальную культуру в лабораторных условиях, ученые неоднократно подмечали, что состав некоторых питательных сред противодействует влиянию препарата.

Лишь в 1940

году ученые смогли наконец разрешить вопрос о том, какое вещество парализует действие сульфаниламидов. Английский микробиолог К. Р. Вудс установил, что это пара-аминобензойная кислота (ПАБК). Каждая молекула этого вещества нейтрализует бактериостатическое действие 1000, а иногда и 26 000 молекул сульфаниламида в культуре стрептококков. Если в культуру стрептококков, в которой ранее введением сульфаниламида их размножение было прекращено, добавить небольшое количество ПАБК, деление клеток возобновляется. Такая активность пара-аминобензойной кислоты позволила Вудсу считать, что это вещество необходимо для нормального существования бактерий.

Подобные наблюдения проводил и соотечественник Вудса Филдс. Он установил, что если в питательной среде количество сульфаниламида выше той нормы, которую могла «блокировать» ПАБК, то размножение прекращается. Филдс развил мысль Вудса об огромном значении ПАБК для бактерий, показав, что это вещество является существенным компонентом ферментов, катализирующих важные реакции в клетках бактерий.

Дальнейшие исследования подтвердили предположение Филдса. Пара-аминобензойная кислота оказалась витамином группы В. Она участвует в качестве кофермента главным образом в процессе переноса атомарного водорода — одной из важнейших биохимических реакций во всех живых клетках.

Каким же образом сульфаниламиды нарушают активность ферментов, содержащих пара-аминобензойную кислоту? Это первый вопрос. И второй: почему эта кислота может «блокировать» в несколько тысяч раз большее количество молекул сульфаниламидов? Ответ на оба вопроса один.

Сравним химическую структуру пара-аминобензойной кислоты и сульфаниламида. Они сходны — лишь вместо карбоксильной группы (—СООН), содержащейся в ПАБК, сульфаниламид имеет сульфамидную группу (—S02NH2). Это сходство позволило Вудсу и Филдсу предположить, что сульфаниламиды замещают ПАБК в ферментах микроорганизмов, тем самым лишая их активности. Если в среде находится достаточное количество ПАБК, ферменты полностью обеспечены этим веществом и сульфаниламиды не могут оказать на них вредного действия. Представим себе, что в питательной среде имеется 1000 молекул белка, которые должны соединиться с ПАБК для образования активного фермента. Но в среде находится лишь 20 молекул ПАБК и несколько сотен миллионов молекул сульфаниламида. 980 белковых молекул не смогут соединиться с ПАБК, и тогда имеющиеся в среде очень сходные в химическом отношении молекулы сульфаниламида соединятся с 980 свободными молекулами белка. Фермент не сможет образоваться, биохимические превращения не произойдут, и в результате клетки перестанут делиться.

Итак: 1. Молекулы ПАБК, соединяясь с определенным белком, образуют фермент, катализирующий основные биохимические реакции. Результат: клетки растут и размножаются.

2. При соединении сульфаниламида с этим же белком фермент не образуется. Результат: биохимические реакции не происходят, рост клеток прекращается и они перестают размножаться.

Сопоставление химической структуры пара-аминобензойной кислоты (ПАБК) и сульфаниламида

При нормальных условиях клетки быстрее усваивают пара-аминобензойную кислоту, чем молекулы сульфаниламидов. С этим связан и факт «блокирования» сульфаниламидов кислотой. Этот факт имеет важное практическое значение: при лечении необходимо ввести достаточное количество сульфамидного препарата, чтобы «блокировать» действие ферментов, в которых нуждается ПАБК.

Еще более эффективным лечебным препаратом является септрин. Он состоит из двух компонентов — сульфаниламида и триметоприма, которые двояко действуют на бактерии: сульфаниламид блокирует включение ПАБК в дигидро-фолиевую кислоту, а триметоприм — ее превращение в тетрагидрофолиевую кислоту, играющую роль «переносчика одноуглеродных соединений».

Поделиться:
Популярные книги

Белые погоны

Лисина Александра
3. Гибрид
Фантастика:
фэнтези
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Белые погоны

Черный дембель. Часть 1

Федин Андрей Анатольевич
1. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 1

Лишняя дочь

Nata Zzika
Любовные романы:
любовно-фантастические романы
8.22
рейтинг книги
Лишняя дочь

Темный Лекарь 5

Токсик Саша
5. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 5

Последний из рода Демидовых

Ветров Борис
Фантастика:
детективная фантастика
попаданцы
аниме
5.00
рейтинг книги
Последний из рода Демидовых

Чиновникъ Особых поручений

Кулаков Алексей Иванович
6. Александр Агренев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Чиновникъ Особых поручений

Попаданка в академии драконов 4

Свадьбина Любовь
4. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.47
рейтинг книги
Попаданка в академии драконов 4

Боги, пиво и дурак. Том 6

Горина Юлия Николаевна
6. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 6

Курсант: Назад в СССР 10

Дамиров Рафаэль
10. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 10

Сделай это со мной снова

Рам Янка
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сделай это со мной снова

Болотник 2

Панченко Андрей Алексеевич
2. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 2

Камень Книга двенадцатая

Минин Станислав
12. Камень
Фантастика:
боевая фантастика
городское фэнтези
аниме
фэнтези
5.00
рейтинг книги
Камень Книга двенадцатая

Небо для Беса

Рам Янка
3. Самбисты
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Небо для Беса

Надуй щеки! Том 4

Вишневский Сергей Викторович
4. Чеболь за партой
Фантастика:
попаданцы
уся
дорама
5.00
рейтинг книги
Надуй щеки! Том 4