Путеводитель в мир электроники. Книга 2
Шрифт:
Простейшие зарядные устройства
Недостаточно только получить знания: надо найти им приложение.
В настоящее время в качестве элементов питания все более широко применяются аккумуляторы. При интенсивной эксплуатации автономных устройств с аккумуляторами, несмотря на то, что стоят они дороже, в итоге питание обходится дешевле, чем если каждый раз тратить деньги на новые батарейки. Во многих устройствах из-за своей относительно невысокой цены используются никель-кадмиевые (NiCd) и никель-металл-гидридные (NiMH)
Заряжать аккумулятор можно продолжительное время (10… 15 ч) или быстро (за 1…2 ч). Установлено, что при медленном заряде оптимальным (с точки зрения проходящих внутри электрохимических реакций) является ток, составляющий 10 % от номинальной емкости Q, то есть Iзар = 0,1·Q. В этом случае не обязательно индицировать окончание процесса зарядки — достаточно выдержать интервал времени 15 ч, и элемент наберет 100 % своей номинальной емкости. При таком режиме заряда срок службы аккумуляторов будет максимальным.
Иногда нет времени столько ждать — требуется более быстрый заряд. Чтобы этого добиться, ток заряда увеличивают в 1,2 раза от номинальной емкости Iзар= 1,2·Q). В этом случае аккумулятор сможет получить только 80 % своей емкости (для ее увеличения до 100 % рекомендуется дальнейшая подзарядка малыми токами 0,05·Q). К тому же при быстром заряде необходимо следить за состоянием аккумулятора, чтобы вовремя прекратить процесс. Проще это делать, контролируя напряжение на элементе, — по мере заряда оно постепенно растет и достигает максимума, после чего начинает так же медленно немного снижаться (из-за сильного внутреннего саморазогрева). Как только начался процесс снижения напряжения на элементе (или его перегрев), зарядку надо прекращать.
Большинство зарядных устройств предусматривает работу от обычной бытовой сети (220 В, 50 Гц) и понижает напряжение до нужного уровня. Давайте рассмотрим, как можно самостоятельно изготовить зарядные устройства для различных применений.
Бестрансформаторное зарядное устройство есть смысл сделать, когда элементам требуется небольшой ток заряда (до 100 мА). В этом случае для понижения напряжения применяется высоковольтный конденсатор небольших размеров, за счет чего габариты всей конструкции удается уменьшить. Избыточное напряжение сети 220 В гасится реактивным сопротивлением конденсаторов (Хс). При этом нет потерь на разогрев, как это происходит с добавочным активным резистором.
Простейшее зарядное устройство показано на рис. 15.1. Оно позволяет заряжать пульсирующим током 26 мА одновременно три или четыре аккумулятора типа Д-0,26 (включенных последовательно) в течение 12…16 ч.
Рис. 15.1. Схема
Назначение всех элементов этой схемы следующее:
C1, С2 — гасят напряжение сети;
R1 — обеспечивает ускорение разряда конденсаторов — после отключения устройства, что исключает получение удара тока при случайном касании руками контактов вилки X1;
R2 — ограничивает ток в цепи при включении вилки в сеть, поскольку этот момент может совпасть с максимальной амплитудой напряжения;
R3 — обеспечивает разветвление тока, так как через большинство светодиодов нельзя пропускать ток более 20 мА;
HL1 — светодиод для индикации работы зарядного устройства (размешается на видном месте корпуса);
VD1 — диодный мост обеспечивает двухполупериодное выпрямление напряжения;
VD2 — стабилитрон для защиты от удара электрическим током при касании руками контактов Х2 во время работы устройства.
Данную схему легко приспособить для заряда любых аккумуляторов с током 10…100 мА (можно сделать и на больший ток, но в этом случае все преимущества «зарядки» теряются, так как потребуется увеличение емкости конденсатора, а они при допустимом рабочем напряжении 400…500 В имеют большие габариты).
Для наиболее часто используемых номиналов конденсаторов их сопротивление и максимально возможный ток (действующий в режиме короткого замыкания нагрузки) указан в табл. 15.1.
< image l:href="#"/>Таблица посчитана по формуле:
где С — емкость подставляется в микрофарадах, тогда результат получится в омах.
Используя эту электрическую схему и зная рекомендуемый для конкретного типа аккумуляторов ток заряда (Iзар), по приводимым ниже формулам можно определить емкость гасящего конденсатора (суммарную) С = С1 + С2. Остальные элементы данной схемы являются вспомогательными и на основной режим работы не влияют.
Пример расчета приведен для аккумуляторов Д-0,26 с зарядным током Iзар = 26 мА.
Необходимо использовать ближайший номинал из ряда (в сторону увеличения).
Нужную емкость можно получить из двух конденсаторов, включенных параллельно или последовательно. После этого надо выбрать по справочнику тип стабилитрона VD2 так, чтобы напряжение его стабилизации превышало напряжение заряженных аккумуляторов (ом устанавливается в целях электробезопасности, ограничивая напряжение на выходных контактах, когда аккумулятор не подключен или неисправен). Тип стабилитрона зависит только от количества одновременно заряжаемых аккумуляторов и величины конденсатора, поскольку необходимо, чтобы возможный ток в цепи не превысил максимально допустимый для него.
В этом зарядном устройстве применяются резисторы типа МЛТ или С2-23, конденсаторы С1 и С2 типа К73-17В на рабочее напряжение не менее 400 В. Резистор R1 может иметь номинал 330…620 кОм. Светодиод HL1 подойдет любой, при этом для других токов заряда резистор R3 лучше подобрать экспериментально так, чтобы свечение было достаточно ярким. Диодная матрица VD1 заменяется четырьмя диодами КД102А или аналогичными выпрямительными.
Топология печатной платы с расположением элементов показана на рис. 15.2.