Чтение онлайн

на главную - закладки

Жанры

Пять возрастов Вселенной
Шрифт:

Рост черных дыр

В эпоху распада черные дыры увеличиваются и становятся более массивными. Они набирают массу, пожирая звезды и газ, которые оказываются в опасной близости к «поверхности» черной дыры — горизонту событий. Как мы увидим из следующей главы, в конечном итоге черные дыры должны отдать свою гигантскую массу посредством испускания излучения, но это случится много-много позже того момента, когда наступит и завершится эпоха распада. А пока они продолжают набирать вес.

В принципе, сверхмассивные черные дыры могут поглотить всю галактику, в которой живут. Сколько времени занял бы этот процесс? Если бы черная дыра весом в один миллион Солнц, вроде той, что находится в центре Млечного Пути, поглощала звезды случайным

образом, она всосала бы в себя всю нашу Галактику приблизительно за тридцать космологических декад (миллион триллионов триллионов лет). Если бы черная дыра изначально имела гораздо большую массу, скажем в один миллиард Солнц, она успела бы погубить Галактику за куда более короткий срок — примерно за двадцать четыре космологические декады. Как бы то ни было, оба этих периода куда длиннее предполагаемого времени жизни галактик. Как мы уже говорили, звезды, образующие галактики, испарятся в межгалактическое пространство по истечении всего лишь двадцати космологических декад. В результате этого большинству звезд удастся избежать «ярости» черных дыр, но некоторые из них все же погибнут именно так.

Однако и черные дыры, и немногочисленные остатки звезд будут существовать и после исчезновения галактик. По прошествии приблизительно двадцати космологических декад черные дыры и остатки звезд принадлежат к своему местному сверхскоплению, следующей по иерархии крупномасштабной структуре, к которой когда-то принадлежала галактика. Эта более крупная структура остается связанной силами гравитации и ведет себя в некотором роде как гигантская галактика. Черные дыры, по меньшей мере по одной на бывшую галактику, принадлежавшую к данному скоплению, будут блуждать по этому скоплению, поглощая звезды и прочее встречающееся им вещество. Таким образом, черные дыры продолжают наращивать массу и увеличиваться

В отсутствие противодействующих физических эффектов динамические процессы испарения звезд, гравитационного излучения (см. главу 4) и поглощения звезд черными дырами будут продолжаться в еще больших пространственных и, соответственно, временных масштабах. Конец этой иерархии должен наступить с завершением эпохи распада.

Остатки звезд и все, что мы считаем обычными веществом, образованы протонами. А по истечении огромного периода времени характер этих самых протонов изменится до неузнаваемости.

Распад протона

Один из сюрпризов, преподнесенный нам физикой частиц во второй половине двадцатого века, состоит в том, что протон, оказывается, не вечен. Протоны, на протяжении продолжительного времени считавшиеся стабильными и бесконечно долго живущими частицами, как оказалось, по истечении достаточно долгого времени могут распасться на более мелкие частицы. В сущности, протонам свойственна экзотическая разновидность радиоактивности. Они излучают более мелкие частицы и превращаются в нечто новое. Этот процесс распада займет невероятно долгое время, значительно превышающее современный возраст Вселенной, значительно превышающее время жизни звезд и даже намного превышающее время жизни галактик. Однако, по сравнению с вечностью, протоны исчезнут довольно скоро.

Как это возможно? Мы уже знакомы с позитроном — несущим положительный заряд антиматериальным партнером более привычного нам электрона. Можно предположить, что в результате распада протона должен появляться позитрон и дополнительно выделяться определенная энергия, поскольку масса протона почти в две тысячи раз больше массы позитрона. Таким образом, позитрон представляет собой состояние с более низкой энергией. Один из фундаментальных физических принципов гласит, что все системы эволюционируют в направлении состояний с более низкой энергией. Вода стекает с холма. Возбужденные атомы испускают свет. Легкие ядра типа водорода в ходе синтеза превращаются в более тяжелые, от гелия и до железа, потому что более крупные ядра имеют более низкую энергию (на частицу). Большие ядра вроде урана являются радиоактивными и распадаются на более мелкие ядра с более низкой энергией. Так почему протоны не могут распасться

на позитроны или другие маленькие частицы?

На самом фундаментальном уровне многие физические теории имеют неотъемлемый закон, запрещающий распад протонов, даже несмотря на то, что в результате этого распада они могли бы перейти в состояние с более низкой энергией. Кратко этот закон можно сформулировать так: барионное число всегда сохраняется. Протоны и нейтроны состоят из обычного вещества, которое мы зовем барионным. Каждый протон или нейтрон содержит одну единицу барионного числа. Частицы типа электронов и позитронов имеют нулевое барионное число, равно как и фотоны, частицы света. Таким образом, если протон распадается на позитроны, в этом процессе происходит потеря барионного числа.

Однако в более новых версиях теорий частиц имеется лазейка. Закон, запрещающий распад протона, иногда может нарушаться, но исключительно иногда. На практике этот кажущийся оксюморон [6] означает, что протоны распадутся по истечении очень долгого времени, намного превышающего современный возраст Вселенной.

Распад протона может пойти по множеству разных путей, вследствие чего могут получиться много разных продуктов этого распада. Один из типичных примеров изображен на рисунке 16. В этом случае протон распадается на позитрон и нейтральный пион, который впоследствии распадется на фотоны (излучение). Возможны и многие другие пути распада. Все разнообразие продуктов этого распада и их популяций нам пока не известно.

6

Сочетание противоположных по значению слов. — Прим. перев.

Рис. 16. Здесь изображен один из возможных путей распада протона. В данном случае конечным результатом распада протона является позитрон (античастица электрона) и нейтральный пион. Пион крайне нестабилен и быстро превращается в излучение (т. е. распадается на фотоны) Если такой распад происходит в плотной среде типа белого карлика, позитрон быстро аннигилирует с электроном, образуя еще два высокоэнергетических фотона

Читатель может спросить, а почему, собственно, мы обсуждаем распад именно протона, а не нейтрона. Дело в том, что нейтроны, находящиеся внутри ядра, распадутся примерно через тот же период времени. Свободные же нейтроны живут не слишком долго. Нейтрон, предоставленный самому себе, распадается на протон, электрон и антинейтрино приблизительно через десять минут. Такой способ распада не разрешен для нейтронов, связанных в атомные ядра. Связанные нейтроны могут пережить лишь долгосрочные способы распада, аналогичные путям распада протона.

Современная физика не дает точного определения среднего времени жизни протона. Простейшая версия этой теории предсказывает, что протон распадется примерно через тридцать космологических декад (10 30лет, или квадрильон квадрильонов лет). Однако это простое предсказание уже было опровергнуто экспериментами, которые показывают, что время жизни протона должно превышать тридцать две космологические декады. Распад протона предсказывает теория великого объединения— теория, объединяющая сильное, слабое и электромагнитное взаимодействия. Эти теории связаны с невероятно высокими энергиями, которые существовали в нашей Вселенной только в первые несколько мгновений после Большого взрыва. Энергии самых больших ускорителей частиц в миллиарды раз меньше тех, что требуются для изучения этого интересного физического режима. В результате этого физики пока не располагают окончательной версией теории великого объединения. В настоящее время изучается много возможных вариантов, причем все они дают разные предсказания относительно времени жизни протона.

Поделиться:
Популярные книги

Жандарм 4

Семин Никита
4. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 4

Прорвемся, опера! Книга 2

Киров Никита
2. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 2

Шайтан Иван 2

Тен Эдуард
2. Шайтан Иван
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Шайтан Иван 2

Архил...? 4

Кожевников Павел
4. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
5.50
рейтинг книги
Архил...? 4

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6

Вперед в прошлое!

Ратманов Денис
1. Вперед в прошлое
Фантастика:
попаданцы
5.00
рейтинг книги
Вперед в прошлое!

Кротовский, не начинайте

Парсиев Дмитрий
2. РОС: Изнанка Империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, не начинайте

Крестоносец

Ланцов Михаил Алексеевич
7. Помещик
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Крестоносец

Фиктивный брак

Завгородняя Анна Александровна
Фантастика:
фэнтези
6.71
рейтинг книги
Фиктивный брак

Николай I Освободитель. Книга 2

Савинков Андрей Николаевич
2. Николай I
Фантастика:
героическая фантастика
альтернативная история
5.00
рейтинг книги
Николай I Освободитель. Книга 2

Убивать чтобы жить 2

Бор Жорж
2. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 2

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила

Отдельный танковый

Берг Александр Анатольевич
1. Антиблицкриг
Фантастика:
боевая фантастика
альтернативная история
5.00
рейтинг книги
Отдельный танковый