Чтение онлайн

на главную - закладки

Жанры

Пятьсот двадцать головоломок
Шрифт:

Три пастуха, гнавших свои стада, встретились на большой дороге. Джек и говорит. Джиму:

— Если я дам тебе 6 свиней за одну лошадь, то в твоем стаде будет вдвое больше голов, чем в моем.

А Дан заметил Джеку:

— Если я дам тебе 14 овец за одну лошадь, то у тебя в стаде будет втрое больше голов, чем у меня.

Джим в свою очередь сказал Дану:

— А если я дам тебе 4 коровы за лошадь, то твое стадо станет в 6 раз больше моего.

Сделки не состоялись, но не могли бы вы все же сказать, сколько голов скота было в трех стадах?

192. Пропорциональное представительство.Когда

Крэкхэмы остановились в Манглтоне- на-Блисе, то застали жителей этого городка взбудораженными в связи с местными выборами. Выборы проходили по принципу пропорционального представительства. Каждому избирателю давался бюллетень с 10 именами кандидатов. Избиратель должен был поставить N 1 против кандидата, за которого отдавал свой первый голос, N 2 против того, за которого он отдавал второй голос, и т. д. до десятого включительно.

Избиратели должны были ставить «галочку» против N 1, против других номеров «галочки» можно было ставить или нет по желанию. Джордж предложил остальным членам семьи узнать, сколькими различными способами может избиратель расставить «галочки» в своем бюллетене.

193. Вопрос относительно кубов.Профессор Рэкбрейн однажды утром заметил, что кубы последовательных чисел, начиная с 1, могут в сумме давать полный квадрат. Так, сумма кубов 1, 2, 3 (то есть 1 + 8 + 27) равна 36, или 6 2. Профессор утверждал, что если брать последовательные числа, начиная не с 1, то наименьшими числами, сумма кубов которых равна квадрату некоторого числа, будут 23, 24 и 25 (23 3+ 24 3+ 25 3= 204 2). Профессор Рэкбрейн предложил найти два наименьших набора последовательных чисел, начинающихся не с 1 и состоящих более чем из трех чисел, сумма кубов которых также равна квадрату некоторого натурального числа.

194. Два куба.«Не могли бы вы найти, — спросил профессор Рэкбрейн, — два последовательных куба, разность между которыми была бы полным квадратом? Например, 3 3= 27, а 2 3= 8, но их разность (19) не является полным квадратом».

Каково наименьшее возможное решение?

195. Разность кубов.Число 1 234 567 можно представить в виде разности квадратов, стоит только выписать два числа, 617 284 и 617 283 (половина данного числа плюс 1/2 и минус 1/2 соответственно), и взять разность их квадратов [13] . Найти же два куба, разность которых равнялась бы 1 234 567, несколько труднее.

13

2 2 a. — Прим. перев.

196. Составные квадраты.Можете ли вы найти два трехзначных квадрата (без нулей), которые, будучи выписанными подряд, образуют шестизначное число, в свою очередь представляющее собой квадрат? Например, из 324 и 900 (18 2и 30 2) получается 324 900 (570 2), но число 900 содержит два нуля,

что запрещено условием.

Задача имеет лишь одно решение.

197. Квадраты в арифметической прогрессии.Как-то утром профессор Рэкбрейн предложил своим молодым друзьям найти три целых числа, образующих арифметическую прогрессию, при этом сумма любых двух из этих трех чисел должна представлять собой квадрат.

198. Дополнение до квадрата.«Какое число, — спросил полковник Крэкхэм, — обладает тем свойством, что если его прибавить к числам 100 и 164 в отдельности, то каждый раз получатся точные квадраты?»

199. Каре.«Один офицер построил своих солдат в каре, — сказала Дора Крэкхэм, — при этом 30 человек у него оказались лишними. Тогда он решил увеличить сторону квадрата на одного человека, но в этом случае ему 50 человек не хватило.

Сколько солдат было у офицера?»

200. Квадраты и кубы.Найдите два различных числа, сумма квадратов которых была бы кубом, а сумма кубов — квадратом.

201. Молоко и сливки.Профессор Рэкбрейн, отведав за завтраком сливок, задал следующий вопрос:

— Честный молочник обнаружил, что в молоке, которое дает его корова, содержится 5% сливок и 95% снятого молока.

Сколько снятого молока он должен добавить в каждый литр цельного молока, чтобы снизить содержание сливок до 4%?

202. Орехи для обезьян.Один человек принес к вольере с обезьянами мешок орехов. Оказалось, что если бы он поделил эти орехи поровну между 11 обезьянами в первой клетке, то остался бы лишний орех, если бы он поделил их между 13 обезьянами во второй клетке, то осталось бы 8 орехов и, наконец, если бы он поделил их между 17 обезьянами в последней клетке, то осталось бы 3 ореха.

Выяснилось также, что если бы он поделил орехи поровну между 41 обезьяной во всех трех клетках или между обезьянами в любых двух клетках, то в любом из этих случаев оставался бы излишек орехов.

Какое наименьшее число орехов могло быть в мешке?

203. Дележ яблок.Однажды утром Дора Крэкхэм спросила у брата:

Если у трех мальчиков есть 169 яблок, которые они должны разделить между собой в отношении 1 : 2, 1 : 3 и 1 : 4, то сколько яблок достанется каждому из них?

204. Колка дров.Однажды за завтраком полковник Крэкхэм сказал, что двое знакомых ему рабочих могут за день напилить 5 кубометров дров. Наколоть же пиленых дров они могут за день 8 кубометров. Полковнику хотелось бы знать, сколько кубометров дров нужно напилить рабочим, чтобы за остаток дня успеть их наколоть.

205. Пакеты с орехами.Джордж Крэкхэм положил за завтраком на стол 5 бумажных пакетов. Когда его спросили, что в них такое, он ответил:

— Я положил в эти пять пакетов сто орехов. В первом и втором пакетах 52 ореха, во втором и третьем — 43, в третьем и четвертом — 34; в четвертом и пятом — 30. Сколько орехов в каждом пакете?

206. Распределение орехов.Тетушка Марта купила орехов. Томми она дала один орех и четверть оставшихся, и Бесси получила один орех и четверть оставшихся, Боб тоже получил один орех и четверть оставшихся, и, наконец, Джесси получила один орех и четверть оставшихся. Оказалось, что мальчики получили на 100 орехов больше, чем девочки.

Поделиться:
Популярные книги

Перекресток

Сфинкс
Проект «Поттер-Фанфикшн»
Фантастика:
фэнтези
5.00
рейтинг книги
Перекресток

Ваше Сиятельство 8

Моури Эрли
8. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 8

Эволюционер из трущоб. Том 7

Панарин Антон
7. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 7

Охота на разведенку

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
6.76
рейтинг книги
Охота на разведенку

Сын Тишайшего 2

Яманов Александр
2. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Сын Тишайшего 2

Плеяда

Суконкин Алексей
Проза:
военная проза
русская классическая проза
5.00
рейтинг книги
Плеяда

Барон Дубов 2

Карелин Сергей Витальевич
2. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 2

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Начальник милиции. Книга 4

Дамиров Рафаэль
4. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 4

Младший сын князя. Том 4

Ткачев Андрей Юрьевич
4. Аналитик
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Младший сын князя. Том 4

Отмороженный 8.0

Гарцевич Евгений Александрович
8. Отмороженный
Фантастика:
постапокалипсис
рпг
аниме
5.00
рейтинг книги
Отмороженный 8.0

Обгоняя время

Иванов Дмитрий
13. Девяностые
Фантастика:
попаданцы
5.00
рейтинг книги
Обгоняя время

Холодный ветер перемен

Иванов Дмитрий
7. Девяностые
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Холодный ветер перемен

Прорвемся, опера!

Киров Никита
1. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера!