Чтение онлайн

на главную - закладки

Жанры

QNX/UNIX: Анатомия параллелизма
Шрифт:

int sem_getvalue(sem_t* sem, int* value);

Эта функция используется преимущественно для отладки операций над семафорами. По адресу, указанному в

value
, устанавливается текущее значение счетчика семафора. Поскольку значение счетчика семафора может измениться в любой момент, то значение, которое возвращает эта функция, имеет смысл только непосредственно в точке ее вызова.

Возможные ошибки:

EINVAL
— неправильный объект семафор
sem.

Использование семафора

Как уже говорилось выше, семафор является крайне гибким

и эффективным средством синхронизации, особенно удобным для построения собственных средств планирования выполнения потоков. В этом смысле семафор представляет ценность не только как самостоятельное средство синхронизации выполнения потоков, но и как материал для построения специфических средств планирования и синхронизации для конкретных задач. Мы уже говорили, что семафор образует самодостаточный базис, позволяющий строить гораздо более сложные средства синхронизации без привлечения других средств синхронизации. В принципе это так, но нет ничего плохого и в смешанном использовании как семафоров, так и мьютексов для построения собственных средств синхронизации.

Проиллюстрируем все вышесказанное на двух примерах. Сначала мы построим «очередь сообщений», предназначенную для трансляции сообщений графической системы к «медленному» обработчику реакций. Это одно из решений весьма распространенной задачи о предотвращении «зависания» пользовательского интерфейса на период выполнения медленного обработчика. Для решения этой задачи обработчик события оконной системы (например, нажатия кнопки или выбора пункта меню) и функция, которая непосредственно производит требуемые действия (предусмотренные по наступлению указанного события - нажатия кнопки), должны располагаться в разных потоках.

Было бы удобно, если бы при поступлении новых данных от графической системы поток обработки автоматически (неявно) разблокировался и немедленно приступал к обработке, а в периоды отсутствия таких данных - простаивал в блокированном состоянии. Для реализации такой схемы мы построили синхронизирующую очередь сообщений, которая использует семафор для уведомления потока обработки о наличии новых данных. В принципе указанная задача сводится к уже упоминавшемуся ранее классу задач о синхронизации производителя и потребителя данных.

class event {

/* класс синхронизирующего события, доставляющего

уведомление о добавлении нового элемента в буфер */

public:

event { sem_init(&_block, 0, 0); }

~event { sem_destroy(&_block); }

void wait { sem_wait(&_block); }

void reset { sem_post(&_block); }

private:

sem_t _block;

};

/* шаблонный класс очереди данных */

template <class T> class CDataQueue {

public:

CDataQueue {}

~CDataQueue {}

void push(T _new_data) {

_data_queue.push(_new_data);

data_event.reset;

}

T pop {

data_event.wait;

T res = _data_queue.front;

_data_queue.pop;

return res;

}

private:

std::queue<T> _data_queue;

event data_event;

};

Принцип

работы
CDataQueue
заключается в том, что для хранения вновь поступающих данных используется очередь, что делает практически независимыми потоки производителя и потребителя. Независимыми во всех случаях, кроме пустой очереди. Потребитель должен быть блокирован до тех пор, пока нет данных от производителя. Как только производитель внесет данные в очередь, поток потребителя разблокируется и считает эти данные. Тонкость заключается в том, что поток потребителя блокируется сам при вызове функции
pop
, а разблокируется из потока производителя при вызове им функции
push
.

Как видите, в построении специфических средств синхронизации нет ничего сложного, вопреки часто встречающемуся утверждению, что создание средств синхронизации со специфическим поведением неадекватно трудоемко, а простейший код позволяет адаптировать возможности тривиального семафора под конкретную задачу.

А теперь хотелось бы обратить ваше внимание на тот факт, что «безопасным» использованием описанной схемы будет только вариант двух потоков — одного производителя и одного потребителя. Если несколько (более двух) потоков одновременно попробуют выполнить функции

pop
или
push
, начнется путаница, и чем это закончится, сказать трудно. По своей логике код обеих функций в многопоточной системе требует эксклюзивного исполнения. Чтобы обеспечить исключительный доступ к этим участкам кода, мы могли бы использовать дополнительный семафор, но есть другой вариант — специальное средство синхронизации, разработанное именно для решения задачи взаимного исключения, - мьютекс.

Мьютекс

Мьютекс (от mutual exclusion — взаимное исключение) — это один из базовых примитивов синхронизации QNX Neutrino. Этот элемент реализуется на уровне микроядра системы и имеет широкий набор атрибутов и настроек. Назначение мьютекса — защита участка кода от совместного выполнения несколькими потоками. Такой участок кода иногда называют критической секцией, и обычно он является областью модификации общих переменных или обращения к разделяемому ресурсу.

Принцип работы мьютекса заключается в следующем: при обращении потока к функции блокировки (захвата)

pthread_mutex_lock
проверяется, захвачен ли уже мьютекс, и если да, то вызвавший поток блокируется до освобождения критической секции. Если же нет, то объект мьютекс запоминает, какой поток его захватил (то есть владельца) и устанавливает признак, что он захвачен.

Когда действия, которые нельзя производить совместно, закончены, поток должен вызвать функцию разблокировки (освобождения)

pthread_mutex_unlock
, которая проверяет, действительно ли вызвавший ее поток является тем, который в данный момент владеет мьютексом, и если да, то она разблокирует мьютекс, после чего ОС проводит редиспетчеризацию потоков. Если есть потоки, ожидающие освобождения мьютекса, то один из таких потоков, имеющий наивысший приоритет, переводится из состояния блокирования в состояние готовности и захватывает мьютекс.

Поделиться:
Популярные книги

Газлайтер. Том 8

Володин Григорий
8. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 8

На Ларэде

Кронос Александр
3. Лэрн
Фантастика:
фэнтези
героическая фантастика
стимпанк
5.00
рейтинг книги
На Ларэде

Охота на попаданку. Бракованная жена

Герр Ольга
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Охота на попаданку. Бракованная жена

Кай из рода красных драконов

Бэд Кристиан
1. Красная кость
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кай из рода красных драконов

Хозяйка Проклятой Пустоши. Книга 2

Белецкая Наталья
2. Хозяйка Проклятой Пустоши
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка Проклятой Пустоши. Книга 2

Безумный Макс. Поручик Империи

Ланцов Михаил Алексеевич
1. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
7.64
рейтинг книги
Безумный Макс. Поручик Империи

Потусторонний. Книга 2

Погуляй Юрий Александрович
2. Господин Артемьев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Потусторонний. Книга 2

Чапаев и пустота

Пелевин Виктор Олегович
Проза:
современная проза
8.39
рейтинг книги
Чапаев и пустота

Солнечный корт

Сакавич Нора
4. Все ради игры
Фантастика:
зарубежная фантастика
5.00
рейтинг книги
Солнечный корт

Лютая

Шёпот Светлана Богдановна
Любовные романы:
любовно-фантастические романы
6.40
рейтинг книги
Лютая

Ведьмак (большой сборник)

Сапковский Анджей
Ведьмак
Фантастика:
фэнтези
9.29
рейтинг книги
Ведьмак (большой сборник)

Наследие Маозари 4

Панежин Евгений
4. Наследие Маозари
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Наследие Маозари 4

Ученик

Губарев Алексей
1. Тай Фун
Фантастика:
фэнтези
5.00
рейтинг книги
Ученик

Начальник милиции. Книга 5

Дамиров Рафаэль
5. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 5