Радиолокация без формул, но с картинками
Шрифт:
При современном развитии радиолокации станция практически никогда не работает в одиночку. Обычно в группе радиолокационных станций производится координация действий и четкое распределение обязанностей между станциями. Те станции, у которых дальность действия больше, работают в режиме обнаружения. Когда цели приближаются, их передают на сопровождение младшим станциям с меньшей дальностью действия, а сами опять переходят в режим поиска. Станции сопровождения, получив целеуказание или координаты обнаруженной цели, уже не тратят времени на обзор пространства, а сразу захватывают цель и начинают следить за ее перемещениями. При этом получают траекторию, пространственную кривую, описывающую движение цели. Математики разработали методы продления отрезка траектории и вперед, и назад. Поэтому, наблюдая цель в течение нескольких секунд, в принципе можно приближенно определить всю ее траекторию. Если мы наблюдаем за спутником,
Заканчивая главу, еще раз покаемся, что рассказали не о всех возможных режимах работы радиолокационной станции. Например, при наблюдении цели на очень больших расстояниях можно использовать полуактивный или полупассивный режим. При этом на самой цели устанавливается и приемник, и передатчик. Слабый зондирующий сигнал усиливается в приемнике и переизлучается передатчиком в направлении радиолокационной станции вместо слабого отраженного сигнала. В таком случае дальность действия станции резко возрастает. Правда, надо еще договориться с самой целью, согласится ли она таскать на себе приемник и передатчик. С чужими целями мы об этом, пожалуй, не договоримся.
Существует, естественно, еще много режимов работы станций. К тому же, каждый уважающий себя специалист стремится придумать какой-нибудь новый режим, более всего подходящий к решаемой им задаче, так что рассказать о всех физически невозможно. Сдаемся и переходим к следующей главе.
Кажется разобрались, что к чему
Мы теперь представляем, каким должен быть сигнал, чтобы станция могла выполнить все поставленные перед ней задачи. Заказчик может быть доволен, ведь мы честно старались выполнить все его требования. Дело теперь за производством.
Скажем сразу: новорожденная, только что построенная станция сначала будет работать несколько хуже, чем ожидали разработчики. Лишь после доводки и отработки сначала отдельных устройств, а потом и всей станции она станет такой, какой представлялась создателям при подписании проекта, а может быть, и несколько лучше. Ведь наука и техника не стоят на месте. К моменту сдачи станции потребителям в научно-исследовательских лабораториях уже рождается замысел следующей станции, которая должна быть совершеннее, компактнее и так далее, и тому подобное. Словом, она должна быть лучше. Чтобы показать, насколько же можно улучшить радиолокационные станции, приведем один, на наш взгляд, весьма любопытный пример.
Американский специалист Катрона сравнил возможности звуколокационного аппарата летучих мышей с параметрами лучших из существующих радиолокационных станций. Такое странное, на первый взгляд, сравнение представляет большой интерес для радиоинженеров, так как летучая мышь, звуколокационный аппарат которой весит доли грамма и занимает объем порядка одного кубического сантиметра, способна выполнять те же функции, что и радиолокационное устройство весом в сотни килограммов и объемом в несколько сотен кубических дециметров.
В результате сравнения Катрона пришел к следующим выводам:
1. Летучая мышь может принимать сигналы, величина которых сравнима с уровнем шумов, в то время как радиолокатор уверенно принимает только те сигналы, которые значительно сильнее шума.
2. Точность определения дальности до объекта и его угловых координат у летучей мыши выше, чем у действующих радиолокаторов.
3. Летучая мышь может поймать, по крайней мере, 175 москитов за 15 минут, то есть одного москита менее чем за 6 секунд. Завидная пропускная способность для системы обнаружения целей и наведения истребителей! Даже лучшие радиолокационные системы вместе с самыми быстродействующими вычислительными машинами, по-видимому, не смогут повторить такой результат. При охоте за москитами летучая мышь движется по оптимальному пути, который специалисты называют «кривой погони». Именно по такой траектории наводят истребители и ракеты вычислительные машины, входящие в состав комплексов противовоздушной обороны. Оказывается, что и «встроенная вычислительная машина» летучей мыши работает на уровне самых современных требований. Отметим здесь, что в опытах, которые провели американские специалисты Д. Гриффитс, Ф. Вебстер и С. Майкл [18] , были зарегистрированы случаи, когда летучая мышь ловила двух насекомых в секунду одно за одним! Поразительный результат!
18
Материал
4. Летучие мыши обычно живут в пещерах и, вылетая из них, пользуются своим природным радаром. Масса летучих мышей одновременно издает крики, но эти крики, вероятно, не заглушают друг друга. Летучая мышь, по-видимому, обладает способностью не реагировать на сигналы, испускаемые другими летучими мышами, и на посторонние помехи. Радиолокаторы пока что похвастаться этим не могут. Сигналы расположенных рядом радиосистем сильно мешают нормальной работе радиолокационной станции, и борьба с помехами все еще остается серьезной проблемой для радиоспециалистов. При использовании радаров для военных целей противник часто старается нарушить работу чужих установок, излучая в направлении приемников радиолокаторов мощные шумовые сигналы. Проведенные с отдельными летучими мышами лабораторные эксперименты показали, что ультразвуковой шум значительной силы почти не влияет на их поведение и не мешает им использовать свой локационный аппарат. Такой устойчивостью к воздействию помех радиолокаторы пока не обладают.
5. Произведенные оценочные расчеты показывают, что мощность сигналов летучей мыши достигает 0,11 ватт на килограмм веса и около 0,03 ватта на кубический дециметр объема. Аналогичные значения для радиолокационной станции равны 0,2–1,0 ватт на килограмм веса и 0,2–0,5 ватта на кубический дециметр. Это единственный параметр, по которому созданные человеком радиолокаторы превосходят звуколокационный аппарат летучей мыши. Но это весьма слабое утешение.
Ведь «энергетическая установка» летучей мыши обеспечивает прежде всего ее перемещение и функционирование внутренних органов, и только часть энергии, по-видимому, очень небольшая, может «подаваться в локационный аппарат». В то же время энергоустановка радиолокационной станции практически целиком предназначена для осуществления локации. Так что сравнение не совсем правомерное. По-видимому, и по этому показателю создание природы существенно опережает творение человеческих рук.
6. Объем данных, которые обрабатывает летучая мышь при обнаружении и преследовании большого числа насекомых, можно сравнить с объемом информации, перерабатываемой аэродромным обзорным радиолокатором. Но летучая мышь ухитряется принимать и обрабатывать сигналы с помощью «устройства» весом в доли грамма и объемом в доли кубического сантиметра, а аэродромный радиолокатор весит сотни килограммов и занимает объем в несколько кубических метров.
Д. Каландер (Массачусетский технологический институт) провел детальное исследование сигналов, издаваемых летучей мышью на разных фазах полета: начальная фаза — поиск добычи, промежуточная — обнаружение и последняя фаза — преследование и поимка. Он доказал, что частота ультразвуковых сигналов сильно изменяется при переходе от одной фазы к другой. Оказывается, что очень важная качественная характеристика — длина волны, измеряемая расстоянием, которое пройдено в воздухе за время одного колебания, — в обоих случаях почти одинакова: 3,4 миллиметра для локационного аппарата мыши и 30 миллиметров для радиолокатора, с которым проводилось сравнение. Здесь летучая мышь имеет даже некоторое преимущество. Кроме того, у нее длина волны варьируется в пределах одного сигнала от 3,4 до 7 миллиметров. Ни один созданный человеком радар не обладает этой особенностью, а вполне возможно, что именно здесь и таится причина удивительной эффективности локационного аппарата летучей мыши [19] .
19
Жерарден Л. Бионика Изд-во «Мир», 1971.
Ухо летучей мыши из породы ночниц представляет собой избирательный отражатель, который может отражать сигналы в различных направлениях в зависимости от их частоты. И действительно, животное посылает сигнал, в пределах которого частота сильно изменяется. Недавно предложено создать радары, использующие этот принцип (сигнал с переменной частотой и антенну, сделанную по диаграмме избирательного излучения), чтобы определять направление на объекты.
Интересны и другие случаи прямого копирования локационного аппарата летучей мыши. Так, например, англичанин Л. Кэй создал миниатюрные акустические радары для слепых. Эхо отражается от предметов по-разному в зависимости от их удаленности от источника сигнала и формы поверхности. После небольшой тренировки с радаром Кэя можно отличить гладкие поверхности от поверхностей, имеющих какую-то фактуру. Этот портативный радар сконструирован на основе использования принципа действия природного локатора летучей мыши.