Чтение онлайн

на главную - закладки

Жанры

Радуга Фейнмана. Поиск красоты в физике и в жизни
Шрифт:

Возьмем задачу определения количества света, излучаемого атомом водорода в магнитном поле. Придется упрощать. Начать можно вот с чего: решить, что магнитное поле в этой постановке задачи – ключевой фактор, и отбросить всю математику, связанную с протоном; или же принять, что именно эффект, производимый протоном, – ключевой, и отбросить описания магнитного поля. Или – как поступил я в своей докторской диссертации – переписать уравнения так, будто в мире существует бесчисленное множество измерений. Решение исследовательской задачи физики требует одного допущения за другим, приближения за приближением – и громадных рывков воображения, которые именуются оригинальным мышлением. Оно требует способности двигаться вперед, следовать за интуицией и принимать в себе неполноту понимания того, что ты вообще делаешь. А главное, оно подразумевает веру в себя.

Подход Фейнмана к решению задачи квантовой хромодинамики сводился к написанию теории в упрощенном виде, чтобы глянуть, какие свойства теории – допущение. Работа Фейнмана над этой задачей похожа на один из его знаменитейших

ранних трудов – теории жидкого гелия. Задача состояла в том, чтобы теоретически объяснить некоторые довольно причудливые свойства этой жидкости. К примеру, она не закипала, а если налить ее в мензурку, она перебиралась через край и утекала, пока мензурка не опорожнялась совсем. Наглядевшись, как физики намучились с прямым решением этой задачи, Фейнман в своем типично вавилонском стиле решил, что лучший подход – «махать руками, применять аналогии с системами попроще, рисовать картинки и выдвигать правдоподобные догадки». В этом – визитная карточка Фейнмана: не мощная математика, а мощное воображение в сочетании с физическим пониманием. Он решил задачу гелия в серии знаменитых статей в середине 1950-х. И, конечно, уповал на повторение успеха.

Фейнман не дожил до устранения затруднений квантовой хромодинамики. И через двадцать с лишним лет после нашего тогдашнего разговора они по-прежнему есть. Ныне единственные новые результаты, вычисленные из теории, произошли не от более глубокого понимания или математического решения теории, но благодаря постоянному применению все более мощных компьютеров.

IX

Продолжая поиски задачи для работы, я раздумывал над тем, что Фейнман говорил о короткой дороге. В чем моя сила? Я всегда имел больше склонности к математике, чем мои однокашники. А еще я был мятежный тип – меня привлекало все, что против общепринятой истины. Большая часть ученых на нашем этаже занималась, как и Фейнман, поиском лучших методов решения задач квантовой хромодинамики. Это направление было связано в основном с обычной математикой и считалось одной из важнейших задач современности.

Но был один профессор, Джон Шварц, чьи исследования привлекали довольно экзотическую математику и шли совершенно вне основного русла.

В природе известны четыре взаимодействия – электромагнитное, гравитационное, сильное и субъядерное, или слабое. У физиков есть теории, описывающие эти взаимодействия: квантовая электрослабого взаимодействия, обобщение квантовой электродинамики, описывающее и электромагнетизм, и слабые взаимодействия; общая теория относительности, которая не квантовая, описывающая гравитацию; и квантовая хромодинамика, описывающая сильные взаимодействия. Верование, что все природные явления могут быть объяснены фундаментальными физическими законами, называется редукционизмом. Вера в редукционизм популярна в физике и пересекает «генеральную линию партии» и у греков фасона Марри, и у вавилонян типа Фейнмана. Это означает, что большинство физиков верит: все во Вселенной – от рождения ребенка до рождения галактики – происходит в результате одного или нескольких фундаментальных взаимодействий. Исходя из того, что большинство физиков придерживается этого взгляда, развитие теорий четырех взаимодействий – едва ли не самая важная задача, за какую может взяться физик-теоретик. Шварц работал над единой теорией, которая, окажись она верной, включит в себя (и видоизменит) все эти теории. Его новая теория одним махом перепишет их все, заменит на одну всеобъемлющую.

Учитывая, насколько разные эти четыре взаимодействия, единая теория, описывающая их все, может показаться большой натяжкой. К примеру, электромагнитная сила может притягивать или отталкивать, а гравитационная – только притягивать. Сильное взаимодействие на малых расстояниях ослабевает, тогда как гравитационное и электромагнитное усиливаются. А еще у этих взаимодействий невообразимая разница в величинах: сильное в сотни раз мощнее электромагнитного, в тысячи – слабого, в миллиарды миллиардов миллиардов – гравитационного. Эти четыре силы играют разные роли в нашей жизни и в бытовании Вселенной. Гравитация, конечно, удерживает нас на Земле и отвечает за приливы и отливы. Но самое значимое влияние заметно в масштабах космоса. Из-за гравитации возникают и вращаются вокруг своих звезд планеты, пылают ядерные горнила внутри этих звезд, дающие свет и тепло, от которых рождается жизнь. А задолго до существования планет именно гравитационное сжатие заставило звезды уплотниться. Электромагнитная сила важна для нас в основном на атомном уровне. Электромагнитные взаимодействия между атомами и молекулами, к примеру, делают предметы вокруг видимыми, позволяют кислороду связываться с красными кровяными тельцами и не дают руке провалиться сквозь стену, когда мы на эту стену опираемся. Именно эта сила придает материалам их основные свойства. И укрощению этой силы, в основном в XX веке, мы обязаны большинством удобств современного мира: от электрического света до телефонов, радио, телевидения и компьютеров. Два других взаимодействия, сильное и слабое, управляют пространством, существующим в масштабах много меньших, чем даже атомный мир электромагнетизма: внутри ядер. Слабые взаимодействия – это радиоактивный распад ядра, называемый бета-распадом. Сильные взаимодействия – это атомная энергия. Именно эта сила, выпущенная из ядер, по массе равных трети унции урана, уничтожила город Хиросиму.

Как можно описать эти четыре силы одной теорией? У истории есть на эту тему урок: в некотором смысле сил – пять, но мы говорим о четырех, потому что первое объединение

сил случилось очень давно. Речь о теориях электричества и магнетизма, своего рода приквеле современного приключения. Сказка такова: давным-давно (в VI веке до н. э.), в тридевятом царстве (Древней Греции), мудрый философ по имени Фалес изучал простейшие электромагнитные явления: магнетизм и статическое электричество. С его дней и до XIX века люди узнавали об электричестве и магнетизме все больше, но у них не возникало подозрения, что это нечто иное, нежели два отдельных класса явлений. Тяготение, электричество и магнетизм являли собой три известных силы природы. Но вот в 1820 году несколько ученых в разных частях Европы обнаружили, что провода с электрическим током имеют таинственные магнитные свойства. А это уже серьезный намек на связь между электричеством и магнетизмом, но никто не понимал толком, какова она, эта связь. В следующие несколько десятилетий все, что этим смертным удалось в описании наблюдаемых эффектов, оказалось мешаниной эмпирических законов. Однако в 1865 году шотландский физик ростом всего-то пять футов и четыре дюйма по имени Джеймс Клерк Максвелл, применив эту самую мешанину, пришел к чудодейственному набору уравнений. Всего несколько строк – и мир узрел, как из электрических разрядов и токов рождаются электрические и магнитные силы и, главное, как эти силы порождают друг друга. Максвелл, таким образом, вывел объединенную теорию двух из трех древних сил – электричества и магнетизма, или, как мы теперь это называем, электромагнетизма.

История к тому же показывает, что Максвеллово объединение – отнюдь не просто теоретическая красивость: изучение следствий его теории открыло революционные новые явления. К примеру, его уравнения вели к тому, что разряды, движущиеся с ускорением, могут производить волны электромагнитных полей. Эти волны всегда двигались с одной и той же скоростью, равной, по его расчетам, скорости света. Такой вывод подвигнул Эйнштейна к созданию специальной теории относительности. Стоило Максвеллу открыть, что свет есть электромагнитное явление, как стало очевидно: могут существовать и другие электромагнитные волны. А это, в свою очередь, проложило путь немецкому экспериментатору Генриху Рудольфу Герцу – он впервые сгенерировал радиоволны, что привело в итоге к разработке технологий радио, телевидения, радаров, спутникового сообщения, рентгена и микроволновок. В «Лекциях по физике» Фейнман писал: «…вряд ли можно сомневаться, что величайшим событием XIX века будут считать открытие Максвеллом законом электродинамики».

Физики называют теорию, объясняющую все силы природы разом, единой теорией поля. Оно стоит того – на минутку задуматься, что это означает. Чтобы теория стала объединенной, ей необходимо выйти за пределы характеристик отдельных сил и описать взаимодействия сил между собой, как удалось Максвеллу в отношении электрических и магнитных сил и их взаимного порождения.

Большинство физиков, ищущих единую теорию поля, требуют еще большего: они желают показать, как все силы природы рождаются из одной фундментальнейшей, хотят найти основополагающий принцип. И хотя экспериментальных подтверждений существования такой силы в природе (или ее отсутствия) маловато, они все равно стремятся к этой теории – из эстетических соображений или из веры, что ко всем природным законам должен существовать один ключ. Подобная единая теория стала бы окончательной победой физики в греческом стиле. Эйнштейн посвятил поиску такой теории большую часть жизни – годы после теории относительности, – постепенно отходя от основного русла физики, сосредоточенной в основном на более практических вопросах.

Помимо математической красоты и потенциального открытия новых физических явлений, объединенная теория поля к тому же обещает ответы на фундаментальные вопросы о том, почему мы вообще существуем. Именно равновесие всех четырех сил природы, их относительная мощь и различные свойства позволяют Вселенной быть такой, какой мы ее знаем. К примеру, представьте, что сила тяготения была бы не столь хилой по сравнению с сильными взаимодействиями. Тогда звезды сжимались бы и дальше, а их ядерное топливо выгорало бы гораздо быстрее, тем самым предотвращая эволюцию жизни. С другой стороны, если бы гравитация была много слабее, электромагнитное отталкивание не позволило бы звездам сконденсироваться. Если бы сильные взаимодействия не были настолько мощнее электромагнитных, большинство ядер распалось бы. А если бы количества электронов и протонов материи отличались от равновесного хотя бы на один процент, электромагнитная сила между вами и кем-нибудь в ярде от вас была бы мощнее земного тяготения. Силы природы не сопоставимы, но тонко сонастроены. Почему? Отдельные теории описывают индивидуальные силы, и лишь теория, охватывающая все взаимодействия, может ответить на этот основополагающий вопрос мироздания.

Эйнштейн взялся за поиск единой теории поля в ситуации до крайности невыгодной: сильные и слабые взаимодействия к тому времени еще не были известны. Но к 1981 году электромагнетизм и слабые взаимодействия уже были объединены в одну теорию, и у физиков появились соображения, как включить туда же и сильные взаимодействия. Искусительно оно, это движение к единой теории. Через тридцать лет после смерти Эйнштейна его поиск обрел новую популярность. В словарь физиков вошел термин «теория всего». Крупнейшее препятствие на пути к успеху, по всеобщему согласию, – гравитация. Физики не только не знали, как включить силу тяготения в единую теорию, но и для этой силы, даже отдельно взятой, по-прежнему не существовало квантовой теории. Ну или придется поверить Джону Шварцу. Шварц заявлял, что его теория может объединить все силы, даже гравитационную, в единую квантовую теорию.

Поделиться:
Популярные книги

Кодекс Охотника. Книга XII

Винокуров Юрий
12. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XII

Бестужев. Служба Государевой Безопасности. Книга третья

Измайлов Сергей
3. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга третья

Кодекс Охотника. Книга IV

Винокуров Юрий
4. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга IV

Адвокат Империи 3

Карелин Сергей Витальевич
3. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 3

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Дурашка в столичной академии

Свободина Виктория
Фантастика:
фэнтези
7.80
рейтинг книги
Дурашка в столичной академии

По осколкам твоего сердца

Джейн Анна
2. Хулиган и новенькая
Любовные романы:
современные любовные романы
5.56
рейтинг книги
По осколкам твоего сердца

На границе империй. Том 8

INDIGO
12. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8

Матабар

Клеванский Кирилл Сергеевич
1. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар

Старая дева

Брэйн Даниэль
2. Ваш выход, маэстро!
Фантастика:
фэнтези
5.00
рейтинг книги
Старая дева

30 сребреников

Распопов Дмитрий Викторович
1. 30 сребреников
Фантастика:
попаданцы
альтернативная история
фэнтези
фантастика: прочее
5.00
рейтинг книги
30 сребреников

Эволюционер из трущоб

Панарин Антон
1. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб

Адвокат вольного города 4

Кулабухов Тимофей
4. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Адвокат вольного города 4

Вернуть невесту. Ловушка для попаданки

Ардова Алиса
1. Вернуть невесту
Любовные романы:
любовно-фантастические романы
8.49
рейтинг книги
Вернуть невесту. Ловушка для попаданки