Чтение онлайн

на главную - закладки

Жанры

Рассказ о строении вещества
Шрифт:

Атомный вес урана в то время считался равным примерно 120. Если верить этому весу, уран должен располагаться в середине менделеевской таблицы. Однако химические свойства этого элемента говорили о том, что его место должно быть в самом конце таблицы, там, где расположились химические элементы с большими атомными весами. И Менделеев смело исправляет ошибку — он увеличивает атомный вес урана вдвое. Так говорит периодический закон, и так должно быть в действительности. С новым атомным весом уран становится на последнем месте таблицы.

Проверка атомного веса урана, проведённая после этого, устанавливает, что Менделеев оказался прав.

Сравнивая далее свойства элементов по периодам, Менделеев

увидел в отдельных местах разрывы в последовательности свойств. Например, на месте родственника алюминия стоял совсем не похожий на него титан. А от этого нарушалось сходство в периодах и у других элементов. Значит, на месте титана должен стоять какой-то другой, еще не открытый элемент, по своим химическим свойствам обязательно схожий с алюминием. И Менделеев оставляет на этом месте в таблице пустую клетку. Мало того, он подробно описывает все химические и физические свойства этого неизвестного химикам простого вещества — его цвет, растворимость, удельный вес и пр. Он настолько ясно представляет себе свойства этого никому неведомого элемента, что даже предсказывает, как будет открыто новое простое вещество. Менделеев пишет, что этот металл будет обладать большей летучестью, чем алюминий, а потому можно надеяться, что он будет открыт спектральным исследованием (особый способ физического исследования тел).

Таким же образом Менделеев оставляет пустые места и ещё для двух неоткрытых элементов — родственников кремния и бора.

Оставляя пустые клетки в своей таблице и описывая свойства ещё никем не виданных химических элементов, Менделеев был твёрдо уверен в правоте своего закона. Он был убеждён, что эти неизвестные пока элементы рано или поздно будут открыты.

«Мы не имели до сих пор никакой возможности предвидеть отсутствие тех или других элементов, — писал русский учёный, — потому именно, что не имели никакой строгой для них системы, а тем более не имели повода предсказывать свойства таких элементов. Решаюсь сделать это ради того, чтобы хотя со временем, когда будет открыто одно из этих предсказываемых мною тел, иметь возможность окончательно увериться самому и уверить других химиков в справедливости тех предположений, которые лежат в основании предлагаемой мною системы».

С другой стороны, открытый закон говорил о том, что нечего искать какой-либо неизвестный щёлочной металл, скажем, между натрием и калием; или пытаться обнаружить элементы, которые по своим свойствам и атомному весу могли бы расположиться между азотом и кислородом. Таких элементов в природе нет — так говорил закон Менделеева.

Но так ли всё это обстоит в действительности?

Слово было за будущим. Подтвердит ли оно научное предвидение Менделеева?

2. Проверка временем

Уже давно, около 300 лет назад, было установлено, что обычный белый свет, идущий к нам от солнца или какого-либо искусственного источника, — свет сложный. Он содержит в себе сумму, или, как говорят, спектр различных цветных лучей — красных, оранжевых, жёлтых, зелёных, голубых, синих и фиолетовых.

Мы часто видим эти цвета во многих природных явлениях, например в радуге. При этом явлении белый солнечный свет как раз и разлагается на свои составные части — отдельные цветные лучи. Можно такого разложения добиться и у себя в комнате. Для этого достаточно луч белого света пропустить через трёхгранную стеклянную призму. Пройдя такую призму, свет преломится и распадётся на составные цвета (рис. 7).

Рис. 7. Трехгранная

стеклянная призму разлагает сложный белый свет в спектр.

Объясняется это тем, что различные цветные лучи преломляются в призме под разными углами.

Это было известно давно.

Но вот в середине прошлого века, незадолго до открытия Менделеева, изучая спектры света, идущего от различных источников, учёные установили один замечательный факт. Было замечено, что пока свет идёт от какого-либо раскалённого и благодаря этому светящегося тела, твёрдого или жидкого, спектр этого света всегда одинаков и подобен спектру солнечных лучей. Какое бы тело ни было взято, спектр его сплошной, цветные лучи следуют друг за другом и в одном и том же порядке.

Но стоит превратить какое-то твёрдое или жидкое тело в раскалённые газы, как свет, испускаемый этими газами, начинает давать уже совсем иной, так называемый линейчатый спектр. Такой спектр состоит не из цветных полосок, а из цветных линий, разделённых тёмными промежутками. При этом — и это самое замечательное — каждый химический элемент, входящий в состав тела, даёт свой собственный, отличный от всех других, линейчатый спектр!

Так, пары калия дают спектр, состоящий из красной и фиолетовой линий; в спектре водорода три характерные линии: красная, зелёно-голубая и синяя.

Таким образом был открыт новый, замечательный способ исследования различных тел природы — спектральный анализ. В самом деле, стоило лишь каким-либо путём раскалить неизвестное испытуемое вещество так, чтобы раскалённые пары его начали светиться, и направить затем свет, идущий от паров, в аппарат — спектроскоп (основной частью которого является трёхгранная призма), как можно было легко увидеть по спектру излучения, с каким веществом мы имеем дело. И что особенно важно — чувствительность этого нового метода анализа была необычайно велика. Миллионные и миллиардные доли грамма какого-либо элемента обнаруживали своё присутствие в спектроскопе!

Рис. 8. Внешний вид одного из современных спектроскопов: А — зрительная труба; Б — система призм в «оправе»; В — трубка, перед которой ставится испытуемое вещество.

Какой это был чудесный незаменимый способ для открытия новых элементов! Ведь, если только исследователь нападал где-либо на малейшие количества нового, ещё не известного простого вещества, спектральный анализ немедленно обнаруживал этот элемент: в спектроскопе появлялось новое, неизвестное до сих пор сочетание цветных лучей — линий. Обнаружение таких малых количеств неизвестного элемента химическими способами часто бывает невозможно.

Вооружившись этим новым оружием познания, изучив спектры всех известных элементов, химики и физики всех стран ринулись на поиски новых, не известных ещё науке химических элементов.

И в первые же годы применения спектрального анализа учёные открывают ряд новых элементов — тантал, рубидий, цезий, таллий. Но и при помощи этого нового, чудесного средства исследования тел поиски новых элементов остаются все так же случайными.

И несмотря на то, что в 1869–1871 годах Д. И. Менделеев публикует в печати свой великий закон и предсказывает свойства будущих, неизвестных элементов, «охота за неизвестными» продолжается, как и прежде, «вслепую». Мало кто из прочитавших сообщение Менделеева понял всю важность этого открытия. А подавляющее большинство химиков мира и совсем ничего не знало об этом, пока… пока не наступил 1875 год.

Поделиться:
Популярные книги

Адвокат вольного города 4

Кулабухов Тимофей
4. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Адвокат вольного города 4

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4

Книга 4. Игра Кота

Прокофьев Роман Юрьевич
4. ОДИН ИЗ СЕМИ
Фантастика:
фэнтези
боевая фантастика
рпг
6.68
рейтинг книги
Книга 4. Игра Кота

Игра на чужом поле

Иванов Дмитрий
14. Девяностые
Фантастика:
попаданцы
альтернативная история
5.50
рейтинг книги
Игра на чужом поле

Магия чистых душ

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Магия чистых душ

Монстр из прошлого тысячелетия

Еслер Андрей
5. Соприкосновение миров
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Монстр из прошлого тысячелетия

Подруга особого назначения

Устинова Татьяна Витальевна
Детективы:
прочие детективы
8.85
рейтинг книги
Подруга особого назначения

Гридень. Начало

Гуров Валерий Александрович
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Гридень. Начало

Последний из рода Демидовых

Ветров Борис
Фантастика:
детективная фантастика
попаданцы
аниме
5.00
рейтинг книги
Последний из рода Демидовых

По воле короля

Леви Кира
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
По воле короля

Последнее желание

Сапковский Анджей
1. Ведьмак
Фантастика:
фэнтези
9.43
рейтинг книги
Последнее желание

Мастер Разума II

Кронос Александр
2. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.75
рейтинг книги
Мастер Разума II

Законы рода

Flow Ascold
1. Граф Берестьев
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Законы рода

Курсант: назад в СССР

Дамиров Рафаэль
1. Курсант
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Курсант: назад в СССР