Чтение онлайн

на главную

Жанры

Растения - гениальные инженеры природы
Шрифт:

Фото 80. Так выглядит помещение, в котором установлена современная ЭВМ. На переднем крае справа — основное оперативное запоминающее устройство. В зависимости от конструкции в нем может быть размещено от 50 тысяч до 2 миллионов ячеек памяти.

Имея в виду все сказанное, можно предположить, что в области создания накопителей информации человек обошел природу. Для подтверждения (а быть может, опровержения?) подобного допущения попытаемся найти аналогичные устройства в растительном мире. Сделать это будет нетрудно, поскольку мы сталкиваемся с ними каждый день, правда, не на лоне природы, поскольку в большинстве своем мы городские жители. Но тем не менее из повседневной жизни мы знакомы и с зерном, из которого изготовляют наш хлеб, и горчичным семенем, делающим столь пикантными паши колбасы, и, наконец, с маком, которым обсыпаются наши любимые булки. Иными словами, речь идет о семенах растений. В каждом из семян содержится подробнейшая информация о внешней форме растения, которому следует появиться из него. В нем хранятся подробные данные о величине, окраске и форме листьев и цветков, а также информация о том, как следует реагировать растению на холод или тепло, кислую или известковую почву, нехватку или избыток влаги, свет или его отсутствие.

Давайте немного посчитаем вместе и попытаемся определить, какое количество битов

информации потребуется для того, чтобы запрограммировать с помощью технической ЭВМ только одну окраску цветка любого растения. Сделать это точно практически невозможно. Тем не менее даже приближенный анализ покажет, в чем, собственно, заключается проблема. Нам хорошо известно, что все оттенки цвета получаются за счет комбинирования трех основных цветов: синего, зеленого и красного. Плотность того или иного оттенка определяется содержанием каждого из трех компонентов в их общей смеси. Чтобы упростить наши расчеты, допустим, что содержание каждого из основных цветов будет изменяться на 1 процент. В реальной действительности этого нет, ибо комбинации могут быть самыми различными. Наше допущение означает, что в одной комбинации доля синего цвета будет равна 1 проценту, в другой — 2 процентам, в третьей — 3 процентам и так далее до тех пор, пока доля синего цвета не составит 100 процентов. Те же самые соотношения справедливы для двух остальных основных цветов. Даже при столь грубом упрощении в сумме получается около 5151 оттенка цвета. Для того чтобы заложить в память ЭВМ любую из этих цветных комбинаций, необходимо иметь 13 ячеек памяти. Кроме того, еще 10 ячеек потребуется для запоминания информации, из которой вытекает, что здесь речь идет именно о цвете, а не о чем-то другом. Нужна также информация о величине, форме, жесткости или каком-либо еще отличительном признаке из тысячи других. Как видим, только для «запоминания» машиной окраски цветка требуется 23 ячейки памяти. Далее, говоря о цвете, важно установить, а что, собственно, должно быть окрашено в растении: корни, стебель, листья, плоды или цветок. Исключительно сложно в данном случае ответить на вопрос о количестве битов информации, необходимых для хранения в «памяти» растения этих сведений. Будем руководствоваться тем, что у растения возможными объектами окрашивания являются 24 вида растительной ткани. Таким образом, нам нужны еще 5 запоминающих элементов. В целом же только для хранения информации о цвете уже необходимо иметь 28 таких элементов. Если мы выберем цветок с тройной окраской (например, у очень скромного по расцветке цветка маргаритки корзинка желтая, лепестки в целом белые, а их кончики розоватые), то число требуемых ячеек памяти увеличится до 84 (3х28). Столь же важна информация о том, как протекает изменение окраски, во-первых, на протяжении всей жизни цветка вообще, во-вторых, в зависимости от уровня освещенности, в-третьих, в зависимости от колебания температуры окружающей среды, в-четвертых, в зависимости от содержания минеральных веществ в почве и так далее и тому подобное. Предположим далее, что для наших расчетов будут иметь силу только эти 4 фактора и что в зависимости от эффективности их воздействия наша цветовая шкала, насчитывающая 5151 оттенок цвета, может изменяться не более чем на 500 дополнительных оттенков. Это потребует запрограммировать дополнительно 6 тысяч вариантов (3x4x500), на что понадобится 13 ячеек памяти. Что касается каждого из четырех факторов воздействия, то чрезвычайно важно знать, какой из многих тысяч химических и физических показателей здесь вообще имеется в виду. В этой связи на каждый цвет необходимо иметь 40 ячеек, а всего — 120. Становится очевидным, что для помещения в вычислительную машину всей необходимой информации о раскраске цветка требуется 217 ячеек памяти. И это только для части самой элементарной информации, касающейся будущего растения.

У кого не отпало желание продолжать вычисления и кто обладает навыками и знаниями в области электронной обработки информации, тот может аналогичным путем запрограммировать и другие отличительные признаки растения. Вне всякого сомнения, он впадет в отчаяние, решая данную задачу, поскольку сразу же возникнет вопрос об окраске корней, ствола, ветвей, листьев, самых разнообразных шипов, волосков, плодов, семян и т. п. Затем наступит очередь информации, описывающей размеры органов растения, структуры их поверхности, а также множества других характеристик. Одно лишь математическое описание внешней формы дерева, системы ветвления его корней и строения кроны, соотношения между диаметром ствола и толщиной ветвей, точной геометрической формы листьев, почек, цветков, плодов, структуры коры потребует нескольких миллионов бит информации. За описанием внешнего облика растения последует описание внутреннего строения: характера расположения основных тканей в растении, формы, размеров и строения клеток специализированных тканей и так далее. Наконец, нельзя обойтись без данных о химическом составе клеточного сока, о процессах роста и развития растения, об их поведении во всех возможных взаимосвязях с окружающей средой, о способе и времени размножения.

Для запоминания всей информации, касающейся растения, не хватит объема памяти крупной современной ЭВМ, к примеру такой, какая изображена на фото 80. Растение же хранит эту колоссальную массу сведений в крохотном семени: у некоторых видов бромелиевых (например, Pitcairnia maidifolia) на один грамм веса приходится не менее 25 тысяч семян. [33]

Еще миниатюрнее в роли запоминающего устройства, изобретенного природой, споры грибов, но и они содержат всю исчерпывающую информацию о строении и поведении того гриба, который их породил. Для того чтобы, например, соблюсти масштабность оригиналов и получить снимок споры гриба в том же увеличении, в каком изображены ферритовые сердечники на фото 79, нужно использовать фотобумагу размером 3,6 метра на 4,8 метра. Это площадь жилой комнаты размером 17 квадратных метров. Нельзя забывать, что размеры оригинала не превышают пяти тысячных долей миллиметра. В сравнении с микроскопическими размерами запоминающего устройства растения память современных сверхминиатюрных ЭВМ выглядит подобно вулкану, сравниваемому со спичкой. Вы считаете, что это преувеличение? Отнюдь нет. Высота вулкана в 3000 метров превышает длину спички в 70 тысяч раз. Объем пространства, занимаемого некрупной, длиною 5 метров, ЭВМ, в миллионы раз больше объема, занимаемого спорой гриба. Ко всему прочему, спора не только и не просто запоминающее устройство, но и одновременно хранитель тех веществ, из которых в будущем разовьется растение.

33

Перечисленная здесь и вся остальная генетическая информация о строении и развитии будущего растения содержится не только в семени растения, но и в любой из его клеток.— Прим. ред.

Ошибается и тот, кто утверждает, что ЭВМ с ее гигантскими размерами не столь восприимчива к посторонним помехам, как «память» семени растения. Для безотказной работы запоминающего устройства ЭВМ необходимы чистый воздух, постоянные влажность и температура воздуха. А что же растения? Семенам некоторых растений и спорам большинства грибов не могут причинить вреда ни низкие температуры, ни температура почти кипящей воды. Они успешно переносят и абсолютное отсутствие влаги и «всемирный потоп». Не страшны им ни песок пустынь, ни чистый, лишенный даже пыли воздух. Иными словами, они готовы ко всему, что может предложить им окружающая среда.

Рекорды измерительной техники

Растения ставят рекорды

Приспособиться к окружающей среде — это прежде всего означает уметь

ориентироваться в ней. Мы, люди, используем для этих целей наряду с органами чувств измерительную технику. Не имея под рукой соответствующих приборов, мы не смогли бы воспринимать нашими органами чувств многие явления окружающего нас мира либо воспринимали бы их с большим трудом. Выявить наличие токсичных веществ в воздухе, который мы вдыхаем, или в воде, которую мы пьем; определить оптимальную освещенность рабочего места или правильную выдержку при фотосъемках; обнаружить следы присутствия какого-либо вещества; измерить содержание влаги в ценных породах древесины, предназначенной для изготовления музыкальных инструментов, — вот лишь немногие из практически бесконечного перечня тех задач, которые мы не в состоянии решить, не обращаясь к помощи созданных нами высокочувствительных приборов.

Жить в полной гармонии с окружающей средой — значит постичь ее законы и поступать, сообразуясь с полученными знаниями. Ту же мысль можно выразить иначе: организм, который живет в полной гармонии с окружающей средой, правильно реагирует на происходящие в ней изменения. Именно так ведут себя растения. Они ни в чем не уступают людям, когда дело касается приспособления к условиям местообитания. Во многом они даже опережают нас. Означает ли сказанное, что растения в состоянии «познать» реальный мир лучше, чем люди, вооруженные самой современной техникой? В общем и целом положительно ответить на этот вопрос нельзя. С помощью радиотелескопов человеку удается, например, улавливать электромагнитные волны, всходящие от сверхудаленных или даже давным-давно взорвавшихся и прекративших свое существование звезд. Человек в состоянии зарегистрировать сейсмические волны взрыва за многие тысячи километров от него, умеет точно определить то количество энергии, которое получают от Солнца Марс или любая другая планета Солнечной системы. Но что дают ему эти необычные рекорды измерительной техники? Качество его жизни они не улучшают. [34] Что касается растений, то они не в состоянии делать ничего подобного. Да им это и ни к чему. С точки зрения системы, ориентирующейся на крайний рационализм, приобретение подобных свойств представляется нецелесообразным отклонением от конкретных условий жизни. Познать окружающий мир для растения вовсе не значит получить информацию о каких-то удаленных созвездиях. Для них достаточно, например, уметь измерять лунный цикл, то есть следить за перемещением Луны на небосводе, с тем чтобы иметь возможность выжить в изменчивых условиях приливной зоны. Как можно точней распознать источник раздражения светом ли, силой ли тяжести или прикосновением, оценивать влажность воздуха, постоянно определять химический состав почвенных растворов — все это находится в самой тесной связи с жизненными функциями растения. И растение овладело техникой измерения разнообразных природных характеристик не хуже, если не лучше, человека, который с той же целью поставил себе на службу большое число самых чувствительных прецизионных приборов.

34

Автор, по-видимому, отдает предпочтение прикладным наукам, полагая, что они в наибольшей степени влияют на качество жизни. Между тем весьма далекая от прикладных задач теоретическая физика привела человечество к использованию ядерной энергии, что очень серьезно повлияло именно на качество жизни человечества.— Прим. ред.

Я уже рассказывал о том, сколь чувствительны к содержанию химических веществ растущие кончики корней растений и некоторые одноклеточные организмы. Например, половые клетки папоротника реагируют на присутствие 0,000000028 миллиграмма яблочной кислоты. Упоминал я и о способности некоторых бактерий обнаруживать ничтожнейшие следы кислорода, на которые не реагирует промышленная аппаратура. Химическую природу имеет, по-видимому, механизм распространения раздражений внутри растения, для его функционирования достаточны уже самые ничтожные количества химически активных веществ. Так, оксикислота, получаемая из выжимки листа мимозы, если ее разбавить в пропорции 1:100 000 000, уже вызывает заметную реакцию растения. Раствор такой концентрации соответствует содержанию 25 капель оксикислоты в объеме воды, которой заполнен бассейн размером 5 метров х 20 метров и глубиной 1,5 метра. Технические анализаторы химического состава окажутся здесь просто бессильными.

Растения настолько точно измеряют время [35] , что изготовители всемирно прославленных швейцарских часов могли бы с полным правом отнести их к разряду «хронометров», отличающихся, как известно, исключительной точностью хода (об этой способности растений мы расскажем несколько далее).

Для вьющихся растений чрезвычайно важно уметь определять характер поверхности опоры. Когда их усики, совершающие в поисках подходящей подпорки круговые движения, касаются какого-либо предмета, они в состоянии тотчас распознать его природу и столь же быстро соответствующим образом отреагировать на него. Тактильная чувствительность специализированных цепляющихся органов растения во много раз превосходит остроту осязания у человека и оказывается намного выше чувствительности аптекарских весов. Микроаналитические весы позволяют взвешивать вещества с точностью до одной сотой миллиграмма. Усик же растения реагирует на раздражение, которое вызывает, например, небольшой шерстяной волосок весом всего 0,00025 миллиграмма, спустя уже несколько секунд после прикосновения и изгибается при этом столь энергично, что его движение можно наблюдать даже невооруженным глазом. В отличие от технических приборов даже очень незначительное раздражение дает возможность растению различать фактуру материала. Падающая капля воды или стеклянная палочка с абсолютно гладкой поверхностью, за которую нельзя уцепиться, не вызывают у растения никакой реакции.

35

Нельзя говорить об «измерении» времени растением. Речь может идти о способности растений реагировать на определенные временные промежутки, на световые импульсы ничтожной, менее 1/10000 секунды длительности и т. п. — Прим. ред.

Столь же удивительна способность растения реагировать на самое ничтожное количество света. Кончики побегов мышиного горошка (Vicia villosa) реагируют на свет электрической лампочки мощностью 25 ватт с расстояния 30 километров, а лампочки мощностью 100 ватт — с расстояния 70 километров. (Заметим, что в этом чисто теоретическом примере сила света составила бы всего 23•10– 9 люкс.) С помощью технических средств совсем не трудно запеленговать 100-свечовую лампочку, находящуюся на удалении 70 километров. Астрономические телескопы, оснащенные соответствующими светоизмерительными приборами, могут обнаружить пламя свечи даже на расстоянии 29 тысяч километров, что соответствует силе света, поступающей от звезды 23-й величины. Но принцип, применяемый здесь, состоит в том, что вначале телескоп увеличивает изображение источника света, а тем самым и наблюдаемую силу света настолько, что ее уже можно измерить инструментально. Однако этой технике не под силу проводить подобные измерения в отношении очень слабых неточечных источников излучения. С большим трудом она лишь может подтвердить наличие такого источника, растение же, например все тот же мышиный горошек, при длительной экспозиции в состоянии реагировать на него. Надо сказать и о другой стороне этой проблемы: если на сверхчувствительный астрономический прибор упадет прямой луч света, иными словами, если освещенность мгновенно возрастет в четыре триллиона раз (4 000 000 000 000!), то он тотчас же выйдет из строя. Оптическая система измерений, присущая растениям, спокойно выдерживает столь колоссальные перепады в уровнях освещенности, которые не в силах вынести даже человеческий глаз, обладающий, в общем-то, очень высокой адаптационной способностью.

Поделиться:
Популярные книги

Гранд империи

Земляной Андрей Борисович
3. Страж
Фантастика:
фэнтези
попаданцы
альтернативная история
5.60
рейтинг книги
Гранд империи

Леди Малиновой пустоши

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Леди Малиновой пустоши

На границе империй. Том 9. Часть 5

INDIGO
18. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 5

Темный Лекарь 5

Токсик Саша
5. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 5

Отборная бабушка

Мягкова Нинель
Фантастика:
фэнтези
юмористическая фантастика
7.74
рейтинг книги
Отборная бабушка

Измена. Мой заклятый дракон

Марлин Юлия
Любовные романы:
любовно-фантастические романы
7.50
рейтинг книги
Измена. Мой заклятый дракон

Темный Лекарь 8

Токсик Саша
8. Темный Лекарь
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Темный Лекарь 8

Мужчина моей судьбы

Ардова Алиса
2. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.03
рейтинг книги
Мужчина моей судьбы

Фараон

Распопов Дмитрий Викторович
1. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Фараон

Боярышня Евдокия

Меллер Юлия Викторовна
3. Боярышня
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Боярышня Евдокия

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Барон переписывает правила

Ренгач Евгений
10. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Барон переписывает правила

Идеальный мир для Лекаря 26

Сапфир Олег
26. Лекарь
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 26

Как я строил магическую империю 5

Зубов Константин
5. Как я строил магическую империю
Фантастика:
попаданцы
аниме
фантастика: прочее
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 5