Большинство других библиотек поддерживают совместимость, включая номер версии в имя библиотеки и позволяя множеству разных версий быть установленными одновременно. Например, инструментальные наборы GTK+ 1.2 и GTK+ 2.0 могут быть одновременно установлены в одной системе, каждый со своим собственным набором заголовочных и библиотечных файлов, путем встраивания в путь к заголовочным файлам и файлам библиотек имени версии.
Раздел стандарта по наименованию разделяемых библиотек в Linux включает старший номер версии для возможности установки в системе множества версий библиотеки. Это используется не очень часто, поскольку в одной системе невозможно скомпоновать новые приложения с множеством версий библиотеки; это просто обеспечивает поддержку лишь обратной совместимости для
существующих приложений, построенных на более старых системах. На практике разработчикам требуется собирать приложения со многими версиями одной и той же библиотеки, поэтому большинство основных библиотек содержат в своем названии и номер версии.
Глава 7
Средства отладки использования памяти
Несмотря на то что С бесспорно является стандартным языком программирования в системах Linux, он имеет ряд особенностей, не дающих программистам возможности писать код, не содержащий тонких ошибок, которые впоследствии очень сложно отладить. Утечки памяти (когда память, выделенная с помощью
malloc
, никогда не освобождается посредством
free
) и переполнение буфера (например, запись за пределы массива) — наиболее распространенные и трудные для обнаружения программные ошибки. Недогрузка буфера (вроде записи перед началом массива) — менее распространенное, но обычно еще более тяжелое для отслеживания явление. В этой главе представлены несколько средств отладки, которые могут значительно упростить обнаружение и изоляцию упомянутых проблем.
7.1. Код, содержащий ошибки
1: / * broken.с* /
2:
3: #include <stdlib.h>
4: #include <stdio.h>
5: #include <string.h>
6:
7: char global[5];
8:
9: int broken(void){
10: char *dyn;
11: char local[5];
12:
13: /* Для начала немного перезаписать буфер */
14: dyn = malloc(5);
15: strcpy(dyn, "12345");
16: printf ("1: %s\n", dyn);
17: free(dyn);
18:
19: /* Теперь перезаписать буфер изрядно */
20: dyn = malloc(5);
21: strcpy(dyn, "12345678");
22: printf("2: %s\n", dyn);
23:
24: /* Пройти перед началом выделенного с помощью malloc локального буфера */
25: * (dyn-1) ='\0';
26: printf ("3: %s\n", dyn);
27: /* обратите внимание, что указатель не освобожден! */
28:
29: /* Теперь двинуться после переменной local */
30: strcpy(local, "12345");
31: printf ("4: %s\n", local);
32: local[-1] = '\0';
33: printf("5: %s\n", local);
34:
35: /* Наконец, атаковать пространство данных global */
36: strcpy(global, "12345");
37: printf ("6: %s\n", global);
38:
39: /* И записать поверх пространства перед буфером global */
40: global[-1] = '\0';
41: printf("7: %s\n", global);
42:
43: return 0;
44: }
45:
46: int main (void) {
47: return broken;
48: }
В
этой главе мы рассмотрим проблемы в показанном выше сегменте кода. Этот код разрушает три типа областей памяти: память, выделенную из динамического пула памяти (кучи) с помощью
malloc
, локальные переменные размещенные в стеке программы и глобальные переменные, хранящиеся в отдельной области памяти, которая была статически распределена при запуске программы [9] . Для каждого класса памяти эта тестовая программа выполняет запись за пределами зарезервированной области памяти (по одному байту) и также сохраняет байт непосредственно перед зарезервированной областью. К тому же в коде имеется утечка памяти, что позволит продемонстрировать, как с помощью различных средств отследить эти утечки.
9
К сожалению, ни одно из средств, описанных в этой главе, не может отследить ошибки в памяти, связанные с глобальными переменными; для этого нужна помощь компилятора. В первом издании этой книги рассматривался инструмент под названием Checker, который представлял собой модифицированную версию компилятора
gcc
, однако он больше не поддерживается. К официальному компилятору
gcc
добавлена новая технология под названием mudflap, которая описана в текущем руководстве по
gcc
.
Несмотря на то что в представленном коде кроется много проблем, в действительности, он работает нормально. Не означает ли это, что проблемы подобного рода не важны? Ни в коем случае! Переполнение буфера часто приводит к неправильному поведению программы задолго до фактического его переполнения, а утечки памяти в программах, работающих длительное время, приводят к пустой растрате ресурсов компьютера. Более того, переполнение буфера является классическим источником уязвимостей безопасности, как описано в главе 22.
Ниже показан пример выполнения программы.
$ gcc -Wall -о broken broken.с
$ ./broken
1: 12345
2: 12345678
3: 12345678
4: 12345
5: 12345
6: 12345
7: 12345
7.2. Средства проверки памяти, входящие в состав
glibc
Библиотека GNU С (
glibc
) предлагает три простых средства проверки памяти. Первые два —
mcheck
и
MALLOC_CHECK_
— вызывают проверку на непротиворечивость структуры данных кучи, а третье средство —
mtrace
— выдает трассировку распределения и освобождения памяти для дальнейшей обработки.
7.2.1. Поиск повреждений кучи
Когда память распределяется в куче, функциям управления памятью необходимо место для хранения информации о распределениях. Таким местом является сама куча; это значит, что куча состоит из чередующихся областей памяти, которые используются программами и самим функциями управления памятью. Это означает, что переполнения или недополнение буфера может фактически повредить структуру данных, которую отслеживают функции управления памятью. В такой ситуации есть много шансов, что сами функции управления памятью, в конце концов, приведут к сбою программы.