Чтение онлайн

на главную - закладки

Жанры

Разумная жизнь во Вселенной
Шрифт:

В настоящее время потребление энергии на Земле в год составляет около 1,5·1027 эрг; это соответствует мощности порядка 5 · 1013 Вт. Вся используемая энергия в конечном счете преобразуется в тепло и излучается обратно в космическое пространство. Для того чтобы наше излучение могло быть обнаружено хотя бы на удалении 10 световых лет (если передачу вести на частоте 3 см с полосой частот в 1 Гц), необходима мощность 2·1017 Вт, что более чем в тысячу раз больше всей мощности, потребляемой на Земле. Приток энергии от Солнца составляет 1017 Вт. Где нам сейчас взять такое количество энергии? Если мы овладеем технологией получения энергии в результате управляемого термоядерного синтеза, то останется вопрос рассеяния энергии в среде обитания. Мы не можем рассеивать на своей планете (и в ее атмосфере) энергии больше, нежели получаем от Солнца, так как нарушим существующие экологические условия. Специалисты считают, что величина расхода энергии, равная 1017

Вт, является предельной не только для нашей цивилизации, но и для любой другой планетной цивилизации. Где же выход? Как можно обойти эти ограничения? Выход указал еще Циолковский: цивилизация должна выходить за пределы своей планеты и ее атмосферы. Если цивилизация выйдет за пределы своей планеты и расселится вокруг своей звезды, то предельная рассеиваемая мощность увеличивается более чем на девять порядков (она станет равной 3·1026 Вт). Значит и нам с нашим передающим центром (антенной и передатчиком) надо выбраться за пределы Земли, если мы хотим вещать на космос.

Специалисты рассчитали, что антенна с передатчиком должна быть вынесена за пределы орбиты Юпитера. Это нужно и потому, чтобы защитить биосферу Земли от излучения мощного радиопередатчика. Имея дело с антеннами, предназначенными для излучения столь большой мощности, надо решать непростой вопрос охлаждения антенны, отвода от нее тепла. Для этого надо строить весьма массивные радиаторы, отбирающие это лишнее тепло.

Размер антенны определяется многими факторами. Но главным из них является излучаемая мощность, а более определенно — та энергия, которую надо отводить от антенны в виде тепла. Было рассчитано, что для того. чтобы наше вещание было услышано на удалении 30 тысяч световых лет, необходимо соорудить антенну в виде шара, радиус которого в шесть раз больше радиуса Солнца! Диаметр этой антенны составляет десятую часть расстояния между Землей и Солнцем!

Так обстоит дело с величиной излучаемой мощности и размерами антенны. Резонно задаться вопросом: как быстро можно осуществить такое строительство? Для него понадобится соответствующий материал (и немало!), который надо будет доставить к месту строительства космическим транспортом. Понадобится и многое другое. В С. Троицкий рассчитал, что время транспортировки растянется на треть миллиона лет. Результат, прямо скажем, неутешительный. Причем он неутешителен вдвойне. Во- первых, мы должны выб-росить из головы мысли о создании всенаправленного ра-диовещания на Вселеннуюс целью установить связь с другими цивилизациями. Во-вторых, мы поняли, что и другие цивилизации, которые находятся на таком же уровне технолог ическог о развития, что и мы, не построят таких пе-редающих центров и не начнут вещать на нас. Конечно, можно себе представить, что имеются цивилизации с раз-ным уровнем технологического развития. Если некоторые, к которым относится и наша цивилизация, овладели энергией только своей планеты, то цивилизации более высоко-го уровня овладели всей энергией звезды. Энергетические возможности таких цивилизаций значительно (примерно на 10 порядков в сравнении с нашей Солнечной системой) выше. Нельзя исключить также существование и еще более раз вит ых в плане технологий цивилизаций. Эти цивилизации, если они имеются, овладели энергией всей своей галактики. Естественно их назвать сверхцивилизациями. Такое деление цивилизаций на типы I, II, III предложено Н С. Кардашевым.

Используя эту терминологию, можно ожидать, что ра-диовещание на космх мэгут себе позволить только цивилизации II и I I I типа. Означает ли это, что надо отказаться от попыток выйти через радиоокно в космос и что не стоит направлять свои приемники на космические радиопередачи? Нет, поскольку имеются и другие, кроме рассмотренных выше, возможности.

Здравый смысл подсказывает, что если мы не имеем возможности обеспечить энергией всенаправленные радиопередачи, то мы должны искать другие, менее энергоемкие пути связи с внеземными цивилизациями. Собственно, такие пути для связи в земных условиях давно разработаны. Нам надо только применить их к новым, космическим условиям. Рассмотрим эти пути.

МЕЖЗВЕЗДНАЯ РАДИОСВЯЗЬ

Опыт, описанный в предыдущем разделе, говорит о том, что нам надо использовать узконаправленные антенны, излучающие в пределах определенного телесного угла. Применение таких антенн позволит не рассеивать энергию во все окружающее пространство, а направлять ее в заданном направлении. Отсюда и получается выигрыш в энергии (мощности), причем чем меньше телесный угол, или как говорят специалисты, чем эже главный лепесток диаграммы направленности антенны, тем выигрыш по мощности больше.

Смысл диаграммы направленности антенны состоит в следующем. Она представляет собой кривую, которая характеризует изменение потока энергии, излучаемой антенной в зависимости от направления.

Можно подсчитать, какой выигрыш энергии мы можем получить, если вместо всенаправленной антенны будем использовать

узконаправленную. Такой подсчет легко выполнить, если знать коэффициент направленного действия антенны (который самым тесным образом связан с формой диаграммы антенны). Чтобы определить этот коэффициент, надо мощность, излучаемую антенной в направлении главного лепестка, поделить на мощность, излучаемую всенаправленной антенной, но в обоих случаях надо брать излучаемые мощности в расчете на единичный телесный угол. Отношение этих мощностей и даст нам численное значение выигрыша в мощности при использовании узконаправленной антенны. Это отношение и есть коэффициент направленного действия. Ясно, что если во всех направлениях он равен единице, то никакого направленного действия антенны нет, она является всенаправленной, или, как еще говорят, «изотропной» (изо — равный, тропос — направление), то есть излучающей одинаково во всех направлениях.

Если использовать для передачи антенну с диаметром 300 метров, то на волне длиной 10 сантиметров получим «выигрыш” в сто миллионов, то есть в 108 раз. Так что игра стоит свеч, и строительство узконаправленных антенн, каким бы дорогим оно ни было, окупается теми результатами, которые с их помощью получаются.

Читатель понял, что мы охотимся за максимальным выигрышем. Но его можно увеличивать не только путем увеличения площади антенны, но также и путем уменьшения длины излучаемой волны. Ведь нам не обязательно работать на частоте 10 сантиметров. Если мы длину волны уменьшим до 1 миллиметра, то выигрыш увеличится в сто раз.

Что касается антенны, то чем ее площадь больше, тем больше «выигрыш» (если только она построена с соблюдением всех требований, которые к ней предъявляются). Что же касается выбора длины волны, то мы не можем ее уменьшать произвольно в погоне за выигрышем. Надо выбирать такую длину волны, излучение на которой могло бы дойти до радиокорреспондента. Это правило должно выполняться даже в том случае, если выбор длины волны не обеспечивает максимального выигрыша в энергии.

ВЫБОР ДЛИНЫ ВОЛНЫ

Связисты знают, что выбрать правильную длину волны (или частоту) — это значит обеспечить надежную радиосвязь. Существует целая служба радиопрогнозов, в задачи которой входит предсказывать оптимальные радиочастоты с определенной заблаговременностью (за год, месяц, сутки и т. д.). Эти службы распространяют долгосрочные, месячные прогнозы и прогнозы меньшей заблаговременности.

Почему же в земных условиях надо все время следить за правильным выбором радиочастоты? Дело в том, что короткие радиоволны, с помощью которых осуществляется связь на Земле, направляются от одного пункта к другому примерно так же, как световые лучи направляются зеркалом. Зеркало, которое направляет радиоволны, находится в атмосфере на высотах от 50 до 350 километров. Оно состоит из заряженных частиц электронов и атомов, от которых оторвано по одному электрону. Такие атомы называются ионами. Их электрический заряд положительный. Процесс отрыва электронов от атомов, в результате которого образуются ионы, называется ионизацией. Та часть атмосферы, где содержится достаточное количество ионов (по крайней мере более ста штук в одном кубическом сантиметре), была названа ионосферой, то есть сферой ионов. С таким же основанием ее можно было назвать и электроносферой, поскольку свободных электронов там столько же (по крайней мере выше 90 километров). Это было бы тем более оправданным, что на распространение радиоволн оказывают влияние именно электроны. Поскольку их масса в тысячи раз меньше массы ионов, они быстрее отзываются на проходящую радиоволну. Отражательная способность ионосферного зеркала определяется концентрацией свободных электронов. Чем эта концентрация больше, тем большей частоты радиоволну ионосфера в этом месте способна отразить.

Если бы концентрация электронов в ионосфере все время оставалась неизменной, то, определив ее один раз, мы узнали бы те частоты, на которых следует вести радиосвязь. Но это не так. Ионосфера практически непрерывно меняется. Дело в том, что ионы и электроны образуются под действием солнечного излучения, а оно зависит от времени суток, широты места, сезона года и т. д. Мало того, часть ионов (и электронов) образуется в ионосфере также под действием не волнового излучения Солнца, а заряженных частиц, которые вторгаются в атмосферу Земли сверху. Эти частицы вторгаются, главным образом, в высоких широтах северного и южного полушарий, где они не только изменяют ионосферу, но и вызывают полярные сияния. Таким образом, ионосферное зеркало, которое должно направлять радиоволны, непрерывно меняется. Наибольшие его изменения имеют место в высоких широтах, где по этой причине труднее всего обеспечить надежную радиосвязь. Служба радиопрогнозов практически пытается определить, какой будет ионосфера на предстоящий период. Зная ионосферу, то есть концентрацию электронов на разных высотах, не представляет труда определить оптимальную рабочую частоту для радиосвязи.

Поделиться:
Популярные книги

Отверженный VIII: Шапка Мономаха

Опсокополос Алексис
8. Отверженный
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Отверженный VIII: Шапка Мономаха

Газлайтер. Том 18

Володин Григорий Григорьевич
18. История Телепата
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Газлайтер. Том 18

Неправильный лекарь. Том 1

Измайлов Сергей
1. Неправильный лекарь
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Неправильный лекарь. Том 1

Вторая жизнь Арсения Коренева книга третья

Марченко Геннадий Борисович
3. Вторая жизнь Арсения Коренева
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вторая жизнь Арсения Коренева книга третья

Охотник за головами

Вайс Александр
1. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Охотник за головами

Младший сын князя. Том 8

Ткачев Андрей Сергеевич
8. Аналитик
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Младший сын князя. Том 8

Новый Рал 7

Северный Лис
7. Рал!
Фантастика:
попаданцы
5.00
рейтинг книги
Новый Рал 7

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII

Камень Книга седьмая

Минин Станислав
7. Камень
Фантастика:
фэнтези
боевая фантастика
6.22
рейтинг книги
Камень Книга седьмая

На распутье

Кронос Александр
2. Лэрн
Фантастика:
фэнтези
героическая фантастика
стимпанк
5.00
рейтинг книги
На распутье

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева

Ученик. Книга третья

Первухин Андрей Евгеньевич
3. Ученик
Фантастика:
фэнтези
7.64
рейтинг книги
Ученик. Книга третья

Измена. Право на любовь

Арская Арина
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на любовь