Разумные машины(Автоматы)
Шрифт:
Опасиметры находят различные применения.
В только что описанном случае опасиметр превратился в неутомимого, очень добросовестного кочегара. В виде автомата-огнетушителя опасиметр служит пожарником.
Робот-химик
Но опасиметр может стать и химиком.
В различных химических производствах и в лабораторной практике химикам часто приходится определять количество кислот или щелочей в различных водных растворах. С этой целью вливают в исследуемый раствор каплю лакмусовой настойки. От этого жидкость в стакане окрашивается в красный цвет, если она содержит кислоту, и в синий
Предположим, что исследуемая жидкость — кислота и окрасилась, следовательно, в красный цвет. Тогда в стакан с этой жидкостью начинают приливать по каплям раствор щелочи. Щелочь, как говорят химики, нейтрализует кислоту, превращая ее в соль и воду. Когда вся кислота будет нейтрализована, жидкость из красной станет светло-фиолетовой. Прибавка только одной капли щелочи к этой жидкости изменит ее цвет в синий, а прибавка одной капли кислоты вызовет ее покраснение.
Вместо лакмуса можно прилить к кислоте каплю фенолфталеина. Фенолфталеин бесцветен сам по себе и остается бесцветным в кислоте. В щелочном же растворе фенолфталеин окрашивается в красный цвет. Приливая щелочь к кислоте, можно дойти до такого момента, когда прибавка только одной капли щелочи превратит жидкость из бесцветной в красную. При обратном вливании в красноокрашенную щелочь кислоты наступает такой момент, когда жидкость обесцвечивается.
Робот-химик. Справа — лампа, слева, возле сосуда — фотоэлемент внутри ящика.
Зная количество прилитой щелочи, можно легко определить, сколько кислоты было в исследуемом растворе. Такой способ определения количества кислоты или щелочи называется титрованием.
Чего-либо сложного в титровании нет. Однако, это довольно кропотливое дело, отнимающее у химика много времени. Возникло желание передать эту работу автомату. На помощь пришел опасиметр.
В химический стакан наливают щелочь, окрашенную фенолфталеином в красный цвет. По обеим сторонам стакана помещают лампу и фотоэлектрический элемент, соединенный при помощи реле с электромагнитным зажимом. Пустив аппарат в ход, химик может заняться любым другим делом. Робот сам прекрасно доведет работу до конца: лишь только жидкость обесцветится, он прекратит приток кислоты, зазвонит и зажжет красную лампу на штативе. Звонок сообщает химику, что анализ окончен, а красная лампа указывает на аппарат, где это произошло. Таким образом один человек получает возможность следить за многими роботами-химиками и значительно повысить производительность своего труда.
С помощью опасиметра с фотоэлементом теперь следят за жесткостью воды, происходящей от растворенных в ней веществ. При кипячении жесткой воды эти вещества откладываются на стенках кипятильника, образуя накипь. С течением времени слой накипи становится все толще. В самоваре накипь никакой опасности не представляет. Но в котле паровой машины накипь может привести к катастрофе.
Происходит это оттого, что, когда отваливается в котле кусок накипи, вода в этом месте начинает соприкасаться с раскаленной стенкой котла, температура которой выше, чем температура накипи всей остальной поверхности. Получается быстрое и усиленное парообразование, которое приводит ко взрыву котла. Наибольшее число взрывов котлов вызывается именно отпадением накипи.
Поэтому
Американский инженер Эдриен сконструировал аппарат, который с помощью фотоэлемента определяет степень напряжений в стекле бутылок. Такой робот позволяет браковать бутылки по внутренним качествам их стекла.
Фотоэлектрический браковщик бутылок инженера Эдриена. Слева, в большом цилиндрическом сосуде — лампа. Справа, рядом с бутылкой — фотоэлемент. Аппарат обнаруживает внутренние напряжения в стекле бутылок.
Всеукраинский институт геологии и минералогии в СССР сконструировал в 1935 г. аппарат с фотоэлементом, который определяет прозрачность и блеск фарфоровых изделий. Этот аппарат может быть применен для сортировки фарфоровых вещей.
Электрический глаз «взвешивает» бумагу
Опасиметр с фотоэлементом нашел применение и в бумагоделательной промышленности.
Бумага изготовляется из древесной массы и из тряпья. И то и другое в результате специальной обработки измельчается, смешивается с водой и превращается в жидкую кашицу. Кашица эта сливается на мелкосетчатые сита, шириною в метр и больше, находящиеся в непрерывном колебательном движении из стороны в сторону. На ситах масса освобождается от воды, уплотняется и передается на сушильные барабаны, обогреваемые паром. Барабанов этих много. Соприкасаясь с ними, бумажная масса спрессовывается, высушивается и превращается в обычную бумагу, которая широкой лентой сбегает с барабанов бумажной машины. Эта лента навертывается на большую катушку.
Бумага делится на различные сорта в зависимости от употребленного сырья (древесная масса или тряпье) и от плотности. Если бумажная машина установлена на какой- либо определенный сорт бумаги, то она должна давать именно этот сорт бумаги, не уклоняясь ни в сторону понижения, ни в сторону повышения качества бумаги. Увеличенная плотность бумаги требует большего количества сырья, и поэтому ее себестоимость будет выше установленной величины. Наоборот, при уменьшении плотности бумаги потребитель получает продукт худшего качества.
Чтобы этого не было, у бумажной машины постоянно дежурит специальный мастер, который время от времени отрывает от бумажной ленты кусок бумаги и, вырезав из него квадрат определенных размеров, взвешивает его. Для каждого сорта бумажный квадрат должен иметь вполне определенный вес.
Если вес в какой-либо пробе получается другой, то мастер изменяет приток на сита бумажной массы, увеличивая его, если вес пробы оказался ниже положенного, и уменьшая в обратном случае.
И все же, несмотря на контроль, бумага получается не вполне однородной. Поэтому возник естественный вопрос— нельзя ли и здесь как-нибудь устроить автоматическую регулировку.