Революция в физике
Шрифт:
Поскольку имеется бесчисленное количество способов выбора осей Dи D', то существует бесконечно большое число возможных поляризаций, потенциально заключенных в начальном состоянии фотона, точно так же, как существуют различные значения энергии, потенциально содержащиеся в состоянии частицы, соответствующая волна которой не монохроматична. Конечно, в исключительных случаях можно точно предсказать результат воздействия николя на фотон: это будет тогда, когда начальное состояние является чистым состоянием в смысле направления поляризации, иными словами, когда падающая волна плоско поляризована вдоль Dи D'.
Следовательно, нельзя спросить о фотоне, связанном с какой-то световой волной: какова поляризация этого фотона?Этот вопрос не имеет смысла: на него не существует сколько-нибудь разумного ответа. Единственный вопрос, который можно задать, заключается в следующем: какова вероятность того, что эксперимент (проделанный с плоским анализатором) позволит нам приписать фотону поляризацию в данном направлении D(нормальном к направлению распространения)?Мы только что видели, как волновая теория дает нам ответ на этот вопрос, и этот ответ существенно опирается на возможность разложения волновой функции на две компоненты.
Паули, чтобы ввести спин электрона в волновую механику, считал необходимым точно так же приписать «КСИ»-волне две компоненты, не предполагая при этом, что эти две компоненты обязательно должны иметь смысл взаимно перпендикулярных компонент вектора, как в случае света. Точно так же, как нельзя говорить о плоской поляризации фотона, нельзя говорить и о направлении спина электрона. Можно лишь спросить о том, какова вероятность, что спин электрона имеет заданное направление.
Однако спин имеет направление и знак. Предполагалось также, что величина спина равна половине квантовой единицы момента количества движения, или h/4»пи». Поэтому Паули предположил, что для каждого направления D(которое не перпендикулярно направлению распространения, поскольку «КСИ»-волны не поперечны) спин может иметь два значения ±h/4»пи» «бета» зависимости от знака, который он имеет в данном направлении. Должна быть определенная вероятность обнаружить на опыте, что спин рассматриваемого электрона направлен вдоль Dи имеет величину +h/4»пи»; определенная вероятность, что эксперимент даст значение спина – h/4»пи» «бета» направлении D.
Паули по аналогии с поляризацией света предположил, что для каждого заданного направления Dволну можно разложить на две компоненты, интенсивности которых являются мерой вероятностей двух возможных величин ±h/4»пи» спина в направлении D. Конечно, если направление Dменяется, разложение «КСИ»-волны на две компоненты производится иным способом, точно так же, как для света разложение на две взаимно перпендикулярные компоненты производится различно в зависимости от того, какова система взаимно перпендикулярных осей. Паули выписал систему двух дифференциальных уравнений, которым должны удовлетворять две компоненты «КСИ»-волны для данного направления D. Он изучил также способ преобразования этой компоненты, когда направление Dменяется. При этом он заметил, что компоненты «КСИ»-волны преобразуются не как компоненты вектора. Перед нами первый пример применения в физике особого математического понятия. Действительно, «КСИ»-волна частицы со спином не попадает в общий класс тензоров, частным случаем которых, как известно, являются скаляры и векторы. Это математическое
Мы не можем здесь подробно описывать формализм теории Паули, к тому же он не получил широкого применения, ибо вскоре был заменен теорией Дирака. Кроме того, теория Паули не релятивистская. Поэтому ее нельзя применить для предсказания тонкой структуры в смысле, указанном ранее Зоммерфельдом. Однако соображения Паули представляют огромнейший интерес. Они показывают, как можно ввести спин в волновую механику, рассмотрев вероятности двух возможных знаков спина для данного направления и введя вместо однокомпонентной «КСИ»-функции «КСИ»-функцию с несколькими компонентами. И Дираку в его блестящей работе удалось довести до конца эту первую черновую попытку.
4. Теория Дирака
Конечно, Дирак руководствовался идеями Паули, но у него был, кроме того, еще один руководящий принцип: создать вполне удовлетворительную релятивистскую волновую механику. Действительно, как мы видели, с самого начала развития волновой механики предполагалось, что релятивистская волновая механика должна базироваться на волновом уравнении второго порядка по времени. Дирак подверг это предположение тщательному изучению и пришел к заключению, что оно должно быть отвергнуто.
Главное возражение Дирака состояло именно в том, что уравнение распространения в релятивистской квантовой механике не может быть уравнением второго порядка по времени. Из такого уравнения в противоположность выводам нерелятивистской волновой механики следует, что если задано какое-либо начальное состояние, выраженное с помощью некоторой «КСИ»-волны, то закон сохранения полной вероятности не выполняется автоматически. Автоматическое же сохранение полной вероятности необходимо для того, чтобы могли соблюдаться общие принципы новой механики.
Дирак проследил эти соображения с железной логикой и пришел к выводу, что уравнение или уравнения релятивистской волновой механики должны обязательно быть уравнениями первого порядка по времени и что, следовательно, в силу релятивистской симметрии пространства и времени они равным образом должны быть уравнениями первого порядка по координатам пространства. Затем с помощью соображений, на которых мы не можем здесь останавливаться, он показал, что в релятивистской волновой механике волновая функция должна иметь четыре компоненты, которые подчиняются системе четырех уравнений в частных производных, которые в целом заменяют единственное уравнение распространения нерелятивистской волновой механики.
Наконец, Дирак исследовал вопрос о том, как преобразуются уравнения распространения и компоненты волновой функции при переходе от одной системы координат к другой. Он довольно красиво показал, что эти уравнения инвариантны относительно преобразования Лоренца. Это сразу сделало его теорию удовлетворительной с релятивистской точки зрения. Он нашел формулы преобразования для четырех компонент волновой функции, которые оказались не такими, как для пространственно временного четырехвектора, а относятся, как мы покажем, к новому типу спинорных преобразований, уже встречавшихся у Паули.
Поразительна именно эта особенность теории Дирака. Уравнения его теории, полученные только с помощью аргументов чисто релятивистской и квантовой природы, в которых нигде не появляется гипотеза о спине, сами по себе содержат все свойства магнитного вращающегося электрона. Действительно, согласно новым уравнениям распространения, электрон будет вести себя так, будто он обладает собственным магнитным моментом, равным магнетону Бора, и собственным механическим моментом, равным половине квантовой единицы момента. Появление спиновых свойств в уравнениях, полученных без привлечения гипотезы о спине, – один из замечательнейших результатов всей современной теоретической физики среди многих, которыми она богата.