Резерфорд
Шрифт:
Почта доставила пакет из Копенгагена в середине' марта, когда у Резерфорда дня не хватало на лабораторные и литературные дела. Вместе с известным дублинским геологом; членом Королевского общества Джоном Джоли он писал большую статью об одном тонком методе радиоактивного измерения Еозраста земных пород. А вместе с бакалавром Ричардсоном проводил экспериментальный анализ гамма-лучей радия-В и радия-С. И уже готовился вместе с магистром Нэттоллом к исследованию рассеяния альфа-частиц в газах. И одновременно приступал вместе с Гарольдом Робинзоном к изучению состава бета-радиации из разных источников. В эти работы вовлечены были д-р Принг, д-р Рассел, бакалавр Чадвик. Да и все его мальчики, занятые самостоятельными исследованиями, нуждались, как обычно, в консультациях шефа. Дни были раздроблены не на часы — на минуты. И он тяжело вздохнул, взвесив на ладони пакет из Дании.
«Пусть это гениально, — означал его вздох, — пусть это даже четырежды гениально, как Экклезиаст самого царя Соломона, но сказано же было — „много читать утомительно для тела“, и откуда раздобыться по горло занятому человеку долгим досугом для штудирования таких пространных работ?!»
С этого-то вздоха и началось то «крайне затруднительное положение», в какое попал тогда
В отличие от других по горло занятых людей у Резерфорда выбора не было. Он мог чертыхаться по-маорийски и поанглийски, но отложить пакет из Копенгагена и не вскрыть его тотчас было выше его сил. И под вечер того мартовского дня Мэри пришлось собрать всю свою добровольную секретарскую опытность, чтобы умело и необидно отвадить по телефону профессора Джона Джоли: Резерфорд заперся в кабинете и не хотел ничего слышать о геологическом возрасте минералов. И Эйлин пришлось в тот вечер одной читать толстую книгу о злоключениях мистера Пикквика.
Резерфорд одолел рукопись датчанина залпом.
И сразу увидел: планетарный атом спасен!
И сразу понял: цена этого спасения — гибель наглядных физических представлений о внутриатомных событиях.
И сразу уловил: теория Бора еще наполовину классична, и это затрудняет понимание ее исходных утверждений. Короче — она недостаточно последовательна.
Но все равно на рукописи лежала печать гениальности: так гармонично и просто все получалось. А получалось, в общих чертах, так:
…Само существование мира постоянно доказывает: атом — устойчивая система. Значит, электроны, вращаясь вокруг ядра, вопреки Максвеллу—Лоренцу не излучают непрерывно. Так, если этого не происходит и они, обессиленные, не падают на ядро, не проще ли всего предположить, что в атоме есть пути, на которых электроны не растрачивают энергию: стационарные орбиты! Только покидая такую орбиту, электрон начинает излучать.
Каждой орбите соответствует неизменный уровень энергии атома. Чем дальше от ядра, тем выше этот уровень.
Любая система тем устойчивей, чем меньше энергии в ней запасено. Атом всего устойчивей, когда электрон вращается по самой нижней стационарной орбите. И конечно, возбужденный притоком энергии извне, атом стремится вернуться в это основное состояние. Поднятый на далекую орбиту, электрон будет падать вниз — к ядру. Но по дороге он сможет застрять, хотя бы временно, на любой из лежащих ниже стационарных орбит. Только повиснуть между орбитами он не сможет, ибо не обретет там никакой устойчивости. И ниже самой нижней разрешенной орбиты спуститься ему тоже не дано. Вращаться по ней он способен неограниченно долго, ибо в состоянии с минимальной энергией ничто не мешает атому жить бессрочно. И ясно, что в таком нормальном состоянии атом не излучает света.
Зато возбужденный атом, расставаясь с избытком энергии, сигнализирует об этом испусканием электромагнитных волн. И если бы в микромире оставались верными классические законы, атомные «спектры возбуждения», как называют их физики, были бы непрерывными, сплошными. Ведь электрон падал бы на ядро по сужающейся спирали, все убыстряя вращение и на всем пути излучая энергию.
А на деле атомные спектры прерывисты — они состоят из серий отдельных линий разного цвета. Бор объяснил, отчего это так.
Череда стационарных орбит, или разрешенных уровней энергии в атоме, — как лестница со ступеньками разной крутизны. В атоме водорода, по мере удаления от ядра, высота ступенек должна убывать согласно Бору как ряд чисел — 1, 1/4, 1/9, 1/16… 1/к2… Чем ближе к ядру, тем круче ступеньки — тем больше разрыв между соседними дозволенными уровнями энергии. Когда возбужденный атом возвращается в нормальное состояние, падающий электрон перескакивает с орбиты на орбиту. Или последовательно — со ступеньки на ступеньку; или сразу через несколько ступенек; или одним прыжком прямо вниз — на минимальный уровень. И атом освобождается от своей избыточной энергии не в непрерывном процессе, а скачками!
Это было главное — самое неклассическое — утверждение Бора.
Скачки означали, что атом излучает свет целыми порциями — едиными и неделимыми, ибо задержаться гдето меж двух разрешенных энергетических уровней электрон не может. Схема Бора показала, как рождаются планковские кванты! Величина излученного кванта зависит от размашистости скачка, совершенного электроном. Ясно, что это не одно и то же — упасть с 8-й орбиты на 7-ю или с 9-й на 1-ю. Разность уровней энергии тут разная — во втором случае гораздо большая, чем в первом. Вариантов возможных скачков много. И ровно столько же различных квантов могут испускать возбужденные атомы. А каждый квант — это порция света одной длины волны, то есть одной, и только одной частоты. Потому-то в атомных спектрах наблюдаются не сплошные многоцветные полосы, а прерывистые серии резко выраженных линий. Многоцветный частокол спектральных линий — линейчатые спектры!
У разных атомов — разные ядра, разные количества электронов, разные лестницы разрешенных уровней энергии, разные наборы возможных квантовых скачков.
Бор расчислил орбиты в атоме с одним электроном. Он смог теоретически предсказать то, что давно уже знали спектроскописты: последовательность частот в сериях спектральных линий водорода. В том году, когда Бор только появился на свет, в 1885-м, Иоганн Бальмер заметил, что в водородном спектре частоты убывают, как числа в уже знакомом нам ряду — 1, 1/4, 1/9, 1/16… 1/ к2… А пятью годами позже другой спектроскопист. Иоганн Ридберг, эмпирически нашел постоянную величину, которую нужно умножать на комбинации этих чисел, чтобы получать сами частоты электромагнитных колебаний в линейчатых спектрах и водорода и других элементов. Происхождение этой «постоянной Ридберга» оставалось совершенно загадочным. А Бор сумел показать, что она служит как бы архитектурным модулем в построении лестницы уровней энергии атома. И математически выразил ее через другие универсальные постоянные — заряд электрона «е», массу электрона «m» и постоянную Планка «h». Это было красиво и убедительно, хотя формула выглядела немножко громоздко:
Главное же — получилось отличное согласие теории с опытом.
Стало ясно: Бор нашел ключ к внутренней — неклассической — механике атома.
Так
«Я получил ответ немедленно, и был он столь характерен для Резерфорда по острой проницательности научных суждений и по человеческой благожелательности…» — много лет спустя вспоминал Бор.
Начинался этот ответ так:
Манчестер
20 марта 1913
Дорогой д-р Бор!
…Я прочел вашу работу с великим интересом, но мне хочется бережно просмотреть ее снова, когда у меня будет больше досуга. Ваши взгляды на механизм рождения водородного спектра очень остроумны и представляются отлично разработанными. Однако сочетание идей Планка со старой механикой делает весьма затруднительным физическое понимание того, что же лежит в основе такого механизма. Мне сдается, что есть серьезный камень преткновения в вашей гипотезе, и я не сомневаюсь, что вы полностью сознаете это, а именно: как решает электрон, с какой частотой должен он колебаться, когда происходит его переход из одного стационарного состояния в другое? Мне кажется, вы будете вынуждены предположить, что электрон заранее знает, где он собирается остановиться…
Это замечание поразило молодого Бора. Он помнил его, как мы увидим, и почти полвека спустя. Но в «крайне затруднительное положение» поставили его совсем другие строки из письма Резерфорда:
…Я думаю, что в своем стремлении быть ясным вы уступаете тенденции делать статьи непомерно длинными и позволяете себе повторять одни и те же положения в разных частях работы. Полагаю, что ваша статья действительно должна быть сокращена, и думаю, что это может быть сделано без какого бы то ни было ущерба для ее ясности. Не знаю, принимаете ли вы во внимание тот факт, что длинные сочинения отпугивают читателей, чувствующих, что они не имеют времени в них углубляться. [9]
9
Автор хочет отметить в сноске, что он отлично сознает, как неосмотрительно с его стороны цитировать здесь это сердито-справедливое замечание Резерфорда.
А через пару строк снова:
…Мне будет очень приятно отправить вашу статью в Phil. mag., но это доставило бы мне больше удовольствия, если бы ее объем был значительно урезан. Во всяком случае, я внесу все необходимые коррективы с точки зрения английского языка.
И еще раз — в связи с обещанием Бора прислать следующие главы работы:
…Послушайтесь моего совета и постарайтесь писать их со всею возможной краткостью, совместимой с ясностью.
И наконец, в пост-скриптуме — с уже неприкрытым раздражением и откровенной властностью:
P. S. Полагаю, вы не станете возражать против того, чтобы я по своему усмотрению вырезал прочь из вашей статьи все те места, какие сочту необязательными? Пожалуйста, ответьте!
Да, все-таки рука Резерфорда с годами стала десницей. А слово «десница» соседствует в словаре со словом «деспот». Конечно, деспотизм его был просвещенным. И умерялся великодушием. И даже допускал дискуссионность. Иначе у него был бы штат, но не было бы школы. И вокруг клубились бы пособники, а не друзья. И все же это был деспотизм, порою доставлявший окружающим ненужные и тревожные заботы о самосохранении.
«Пожалуйста, ответьте!»
Легко представить себе час смятения в Копенгагене, в доме молодой четы Боров на Сент-Якобсгаде, 3. Под реальной угрозой оказалось быстрое опубликование в авторитетнейшем лондонском журнале такой многообещающей и долгими трудами давшейся работы: Бор считал обязательным каждый абзац в своей статье и не желал, чтобы ее подвергала вивисекции даже рука Резерфорда. Что же будет?.. А квантовые идеи уже настойчиво проникали в атомную физику — их уже пытались приложить к проблеме строения вещества Вальтер Нернст, Дж. Никольсон, Н. Бьеррум, Артур Хааз… Квантовые возможности уже дискутировались на научных семинарах в разных местах. И как сказал полтора года назад в Брюсселе Лоренц, «вполне вероятно, что пока происходит коллегиальное обсуждение намеченной проблемы, какой-нибудь мыслитель в уединенном уголке мира уже дошел до ее решения». Вот он, Бор, дошел. И было бы невыразимо досадно так непредвиденно задержаться у финиша!.. А задержка теперь казалась неминуемой — и не только потому, что он не мог уступить требованиям Резерфорда, послав по телеграфу короткое: «Согласен любые сокращения». Дело психологически осложнилось: пока шло письмо из Манчестера, он, Бор, переполненный мыслями и жаждущий развивать успех в новых направлениях, отправил вдогонку своей первоначальной рукописи новый ее вариант — и отнюдь не урезанный, а расширенный! «Существенно расширенный», как рассказывал он позже. В свете властного резерфордовского пост-скриптума это выглядело ужасно.
…Я почувствовал, что есть единственный способ поправить случившееся — немедленно поехать в Манчестер и обо всем переговорить с Резерфордом наедине.
Такова была предыстория его внезапного появления мартовским вечером 1913 года на Уилмслоу-роуд, 17.
Когда за спиною затворилась дверь кабинета и хозяин стремительно подвел его к письменному столу, Бор сразу узнал в распластанных бумагах оба варианта своей работы. Он увидел отброшенные в сторону страницы, отчеркнутые абзацы, вымаранные фразы, исправленные поверху слова. Он не взбунтовался — он был к этому готов.
Да и вообще в печальном зрелище рукописи, к которой прикоснулась десница Резерфорда, не было для него ничего особенно нового. В прошлом году он не раз воочию наблюдал, как готовились в Манчестерской лаборатории статьи для печати. Видел экзекуции над английскими текстами поляка Казимира Фаянса, венгра Дьердя Хевеши, немца Ганса Гейгера… Видел испытания, выпадавшие на долю и англичан — Джемса Чадвика, Дж. М. Нэттолла, мисс Мэй Сибил Лесли и многих других. Видел, что этих испытаний не удавалось избежать даже сверхревностному Генри Гвину Джеффрису Мозли. Больше того — он видел, как терзал Резерфорд самого себя, готовя к печати третье издание своей знаменитой «Радио-активности», которая должна была выйти в обновленном виде под названием «Радиоактивные вещества и их излучения». Кстати, именно в этой книге, редактируя себя, Резерфорд, кажется, впервые ввел в обращение термин «нуклеус» — «ядро» вместо многословного — «центральное заряженное тело в атоме».