Рождение машин. Неизвестная история кибернетики
Шрифт:
МТИ удалось разрешить эту задачу, и в этом есть доля иронии: разрушая Англию, Германия помогла создать мощное оружие, которое помогло ее победить. Свирепые атаки немецких сил на Лондон и юго-восточную Англию привели к тому, что Британия сосредоточила усилия всех своих инженеров на быстрой разработке продукции военного назначения. Научные исследования потеряли часть финансирования, поэтому сэр Генри Тизард, член Комитета по аэронавигационным исследованиям Британии, позволил США проводить изыскания, связанные с британскими секретными экспериментами в области микроволновой технологии. В конце 1939 года исследователи из Бирмингемского университета сделали сенсационное открытие и построили микроволновую пушку, назвав ее «магнетрон» [27] .
27
H. A. H. Boot and J. T. Randall,
Электрические системы наведения требовали меньше навыков от операторов, меньше времени и денег для производства, а в работе позволяли получить большую точность, скорость и гибкость.
Крошечное изобретение было примечательно тем, что могло испускать столь желанные короткие волны и работало в сантиметровом диапазоне. А его миниатюрные размеры позволяли устанавливать его на самолеты и корабли. Магнетрон открывал широкие возможности для военных самолетов: теперь солдаты могли увидеть врага в любое время суток, в то время как враг еще не видел их. Кроме того, мобильные радары позволяли самолетам летать в темноте, а кораблям – маневрировать в густом тумане. И это еще не все: сигнал радара, если он работает с десяти- и трехсантиметровыми волнами, гораздо труднее заглушить, чем длинноволновый сигнал. Это давало большое преимущество – теперь союзники могли заглушить сигнал врага, лишив его ориентиров, и не ослепить при этом свои собственные приборы.
Американская программа разработки радаров кардинально изменилась 28 августа 1940 года – со встречи двух ученых. В ту среду свирепый тропический шторм обрушился на среднеатлантические штаты. Вэнивар Буш обедал с Тизардом в вашингтонском клубе «Космос». Они хорошо поладили, обнаружив общий интерес к практическому применению гражданских исследований. Этот обед послужил толчком к целой серии событий, в результате которых NDRC Буша взяло под контроль исследование микроволн. Армия и флот прекратили свое собственное исследование в этой области еще в 1937 году и не возражали против такого решения. «С магнетроном, – вспоминал Буш, – мы вырвались вперед» [28] .
28
David Zimmerman, Top Secret Exchange: The Tizard Mission and the Scientific War (Montreal: McGill-Queen’s Press, 1996, 135.
В октябре 1940 года была учреждена Радиационная лаборатория МТИ, которая поначалу занимала всего несколько комнат и в которой работало всего несколько десятков исследователей. Буквально за какие-то месяцы лаборатория совершила колоссальный шаг вперед. Инженеры МТИ сделали еще одно блестящее открытие: они использовали обратную связь и скоординировали сервомеханизмы антенны с отраженным импульсом радара, иными словами, создали автоматическое управление гаубицами.
В конце мая 1941 года Радиационная лаборатория продемонстрировала экспериментальную автоматическую радарную систему. Инженеры привезли механизированную турель на крышу здания МТИ и настроили систему так, чтобы пулемет автоматически отслеживал самолет, пролетающий мимо, даже в условиях сплошной облачности. Демонстрация впечатляла.
Следующий шаг был очевиден: взять этот приборчик, перепроектировать его и встроить в автоматическую систему противовоздушной обороны. В начале декабря 1941 года Радиационная лаборатория продемонстрировала свое экспериментальное оборудование в расположении войск связи США в Форте Ханкок, Нью-Джерси. Вечером в пятницу 5 декабря инженеры праздновали успех своей новой машины, а через два дня Япония атаковала Перл-Харбор.
В течение следующих четырех военных лет лаборатория превратилась в огромный исследовательский центр, который выполнял большую часть работы по разработке радаров в США. Ее ежемесячный бюджет составлял четыре миллиона долларов, а число сотрудников достигало четырех тысяч человек, причем в это число входила пятая часть лучших физиков государства [29] . Радиационная лаборатория имела свой собственный завод, аэропорт в Бедфорде, штат Массачусетс, а также сеть радиолокационных станций в США и по всему миру. Лаборатория стала самым крупным проектом NDRC и одним из самых прославленных
29
«Tech’s Radar Specialists Now Return to Peace Jobs», Christian Science Monitor, August 15, 1945, 2.
Наибольшим достижением лаборатории можно назвать микроволновый радар XT-1 с системой автоматического наведения, который военные переименовали в SCR-584. Это было очень важное устройство, с появлением которого почти все ранее созданные радары в одночасье устарели. Машина была достаточно точной, чтобы отобразить на своем экране траекторию 155-миллиметрового артиллерийского снаряда, когда он приближался к цели. Когда маленькая звездочка и более крупная звездочка сходились на экране, они просто исчезали.
То, как гидравлические приводы усиливали мускулы человека, просто впечатляло. То, насколько радарная система улучшала его восприятие, впечатляло еще сильнее. Однако даже двух этих усовершенствований было недостаточно. Чтобы издалека нанести удар по немецкому бомбардировщику, нужно было нечто большее, чем заранее увидеть самолет и направить на него оружие. Чтобы попасть по вражескому бомбардировщику, нужно было еще понять, куда целиться. Снаряд не может перемещаться со скоростью света, как импульс радара: 155-миллиметровый снаряд может находиться в воздухе до 20 секунд, прежде чем настигнет цель, а за это время немецкий бомбардировщик может пролететь более трех километров. Как и в случае с охотником, стреляющим по летящим уткам, стрелок должен предугадать траекторию полета мишени и нацелиться на точку в будущем. Для этого предсказания нужен был специальный механический мозг.
Военные подразделения, ответственные за стрельбу из больших орудий, называются «батареи». Управлять стрельбой, особенно точным наведением сложных артиллерийских орудий, было крайне непросто. Начнем с того, что различные элементы противовоздушной батареи могли располагаться на расстоянии нескольких метров друг от друга, в зависимости от местности и выбранной стратегии. Независимые компоненты батареи связывались телефонными линиями. Чтобы поразить цель, наблюдатель должен был передать данные офицеру по телефону. Офицер вводил данные в примитивный компьютер и получал выходные значения. Затем он передавал эти значения по телефону пулеметчикам. Стрелки настраивали орудия, наводили их на цель и только после этого стреляли. Половина работы держалась на телефонных переговорах, точность стрельбы зависела от качества связи. Поэтому нужно отдать должное телефонной компании Bell Telephone Laboratories и исследовательскому институту, основанному AT&T и Western Electric, неустанно совершенствовавшим свое оборудование.
Точная стрельба батареи по движущейся цели требовала двух независимых вычислений: баллистики и предсказания. Баллистические расчеты были проще и заключались в решении одной задачи – куда выстрелить, чтобы снаряд взорвался в определенной точке пространства и времени. Стрелку нужно было ввести всего три значения: азимут и высоту, чтобы определить направление стрельбы, а также время, чтобы определить точный момент выстрела. При традиционном, неавтоматизированном, методе членам артиллерийской команды приходилось вычитывать эти значения из специальных таблиц, состоящих из длинных колонок значений высоты, азимута, настроек замедлителя, времени полета и свободного падения.
В ходе эволюции артиллерийских установок добавились новые поправки: на начальную скорость снаряда, встречный и попутный ветер, температуру и давление воздуха и многие другие. Изучать таблицы в самый разгар стрельбы стало окончательно неэффективно. Так появились механизированные наводчики, которые автоматизировали поиск по таблицам. Место бумаги с колонками цифр заняли металлические конусы, утыканные кнопками, немного напоминающие цилиндры в старомодных музыкальных шкатулках. Эти цилиндры, так называемые камеры Sperry, выглядели как скрученные и изогнутые стволы деревьев, но они работали, и работали лучше человека. Фактически эти конусы были первым независимым хранилищем данных – то, что сейчас мы называем ROM (Read Only Memory), а прибор для их чтения – примитивным механическим компьютером. Машина научилась выбирать и комбинировать значения, рассчитанные заранее.