Чтение онлайн

на главную - закладки

Жанры

Шрифт:

И в этой же плоскости сосредоточены также крупные массы темной космической пыли.

Примерно 6 или 7 миллиардов лет назад Солнце нагнало одну из таких туманностей и пролетело сквозь нее, как бы пробивая в ней туннель.

Средние размеры пылевых облаков составляют, примерно, 10 световых лет, то есть они имеют в поперечнике около 95·1012 километров. Возможно, что скорость Солнца по сравнению со скоростью туманности равнялась, примерно, 30 километрам в секунду или 950 миллионам километров в год.

При такой скорости путешествие

Солнца внутри туманности длилось около ста тысяч лет.

Пролетая сквозь газово-пылевое облако, Солнце своими лучами отметало прочь самую мелкую пыль и молекулы газов, а более крупные частицы-песчинки своим тяготением захватывало «в плен» и заставляло обращаться вокруг себя.

Этим сразу объясняется коренное противоречие солнечной системы — странное распределение моментов количества движения между планетами и Солнцем.

Момент количества движения, которым владеют в настоящее время планеты, принесен в солнечную систему роем твердых частиц, захваченных Солнцем. Он заимствован из того запаса, которым обладает Галактика.

Частицы, плененные Солнцем, обращались возле него по самым различным и, конечно, очень вытянутым «кометным» орбитам. Но направление движения у подавляющего большинства этих частиц было одинаковым, потому что все они принадлежали одному облаку и унаследовали от него свое движение.

Если какие-либо частицы двигались в противном направлении, то они неизбежно сталкивались со встречными песчинками и камешками, разбивались, теряли скорость и гибли, падая на Солнце.

Точно так же большинство частиц, пойманных тяготением Солнца, держалось в основном той плоскости, в какой двигалось все облако. Эта плоскость приблизительно совпадала с плоскостью солнечного экватора.

Пути пылинок, кружившихся вокруг Солнца, пересекались. Пылинки постоянно сталкивались между собой, некоторые из них отскакивали друг от друга, другие слипались вместе, но так или иначе после каждого столкновения пути частиц изменялись.

В результате непрестанных соударений частицы, летавшие по пересекающимся орбитам, постепенно выходили из строя или же вливались в общий круговой поток, двигавшийся вокруг Солнца. Песчинки, державшиеся в одной — центральной плоскости, сохранились, а число их увеличивалось за счет песчинок, свернувших со своего прежнего пути после столкновений.

Беспорядочно роившееся вокруг Солнца скопище понемногу устраивалось — возникало сравнительно организованное, упорядоченное сгущение пылевого вещества, которое охватывало Солнце наподобие кольца Сатурна, но оно было несравненно более толстое.

Здесь в этом первобытном скоплении пылинок началось образование зародышей будущих планет. Мелкие пылинки слипались друг с другом, падали на более крупные, и так возникали ядра, вокруг которых сгущалось космическое вещество, давая начало будущим планетам.

Эти зародыши планет первоначально обращались вокруг Солнца по сильно вытянутым эллиптическим орбитам, подобно нынешним кометам. Но на них непрерывным дождем сыпались песчинки. Каждое падение, каждый толчок, который испытывала юная планета, заставлял ее

слегка отклоняться от прежнего пути и двигаться по новой орбите.

Закон планетных расстояний

Планеты росли, накапливали вещество и вместе с тем суммировали орбиты всех падающих на них частиц. В результате — эллиптичность их собственных орбит уменьшалась. И чем больше планеты накапливали материала, тем округленнее становились их орбиты.

При этом О. Ю. Шмидт указывает, что зародыши будущих планет могли возникнуть в любом месте пылевого сгущения, но сохранились они только на строго определенных расстояниях от Солнца и друг от друга.

Ядра планет формировались в областях устойчивых орбит, то есть там, где мешающее действие соседних ядер было наименьшим.

Вообразим для примера, что два планетных ядра сложились слишком близко друг от друга. Разумеется, они быстро подберут весь космический материал, находящийся между их орбитами. В дальнейшем им волей-неволей придется довольствоваться частицами со стороны.

Ядро планеты, расположенное ближе к Солнцу, сможет захватывать песчинки, летающие между ним и Солнцем. Более далекое от Солнца ядро будет вынуждено собирать космический материал со своей теневой стороны.

Иначе говоря, ближайшая к Солнцу планета начнет расти за счет частичек, летающих слева от нее, а более далекая планета — за счет частичек, летающих справа от нее.

Непрерывные толчки песчинок и камешков, падающих на поверхность юных планет, приведут к тому, что более близкое к Солнцу планетное ядро отойдет влево, в сторону своего «пастбища» — приблизится к Солнцу, а более далекое отойдет вправо, поближе к своему «пастбищу» — удалится от Солнца. Ядра планет разойдутся и в конце концов займут строго определенные устойчивые орбиты.

Может быть и другой случай. Между двумя планетными ядрами, расположенными на достаточном удалении друг от друга, возникнет третье промежуточное ядро. Это третье — лишнее — ядро быстро исчерпает запас космического материала в окружающем пространстве, останется малорослым «недомерком» и поэтому не сможет округлить свою орбиту Обращаясь вокруг Солнца, оно будет поочередно приближаться то к более близкой от Солнца планете, то к более далекой и, в конце концов, под действием их тяготения развалится, а ее вещество станет добычей соседей.

Таким образом, сам процесс роста молодых планет за счет падающего на них материала заставляет их не только округлять свои орбиты, но и занимать «законные» места в солнечной системе, где можно было бы расти без особых помех.

Академик О. Ю. Шмидт решил вычислить на основе своей гипотезы, каковы должны быть эти «законные» устойчивые орбиты планет, образовавшихся из скопления твердых частиц, летавших возле Солнца. Эта задача поддается математическому решению.

Расчеты О. Ю. Шмидта привели к весьма важному выводу: расстояния между планетами могут быть представлены некоторой математической формулой, в которой как частный случай заключается правило Боде-Тициуса.

Поделиться:
Популярные книги

Николай I Освободитель. Книга 2

Савинков Андрей Николаевич
2. Николай I
Фантастика:
героическая фантастика
альтернативная история
5.00
рейтинг книги
Николай I Освободитель. Книга 2

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Начальник милиции. Книга 3

Дамиров Рафаэль
3. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 3

Калибр Личности 1

Голд Джон
1. Калибр Личности
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Калибр Личности 1

Боги, пиво и дурак. Том 6

Горина Юлия Николаевна
6. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 6

Гримуар темного лорда IX

Грехов Тимофей
9. Гримуар темного лорда
Фантастика:
попаданцы
альтернативная история
аниме
фэнтези
5.00
рейтинг книги
Гримуар темного лорда IX

Попаданка в академии драконов 2

Свадьбина Любовь
2. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
6.95
рейтинг книги
Попаданка в академии драконов 2

Возвышение Меркурия. Книга 5

Кронос Александр
5. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 5

Газлайтер. Том 8

Володин Григорий
8. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 8

Купец IV ранга

Вяч Павел
4. Купец
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Купец IV ранга

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х

Вдова на выданье

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Вдова на выданье

Система Возвышения. Второй Том. Часть 1

Раздоров Николай
2. Система Возвышения
Фантастика:
фэнтези
7.92
рейтинг книги
Система Возвышения. Второй Том. Часть 1

Случайная свадьба (+ Бонус)

Тоцка Тала
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Случайная свадьба (+ Бонус)