Сфинксы XX века
Шрифт:
Рано или поздно открытие придет. Авторы обязательно будут. Если не одни, так другие. Один исследователь может лишь опередить другого. Иногда на несколько лет, иногда на несколько десятилетий. И зависит это не только от проницательности ума ученого, его умения работать, его таланта. Открытие всегда дитя по крайней мере трех сил: современного уровня человеческих знаний, качеств ученого и условий, в которых он работает.
И нельзя удержать открытие в тайне бесконечно долго. Да что там бесконечно! Зачастую его нельзя удержать в тайне даже в течение года.
Недавно в одном из наших журналов была помещена статья, в которой автор
Исследования идут широким фронтом. Как же можно утаить открытие, когда его уже ждут, ибо оно естественно вытекает из всей совокупности работ! Значительное одинаковое открытие, как правило, подготавливается одновременно в нескольких лабораториях. Утаить невозможно. Сегодня ты утаил. А завтра его вновь откроют в другом месте. И приоритет родины потерян.
История знает немало примеров, когда открытия повторялись, когда те или иные закономерности открывались вновь. Иногда по прошествии нескольких десятилетий, иногда через несколько лет. А иногда — и отнюдь не редко — открытие совершается одновременно разными учеными в разных частях света.
Человек в парике и машина
В 1763 году уральский инженер Иван Ползунов разработал проект, а в 1765 году создал универсальный паровой двигатель. Этот двигатель работал, обслуживал завод. Через год Ползунов умер. Его паровая машина была заброшена, и никто в мире не узнал о ней — Россия того времени не заботилась об открытиях, информация о них не публиковалась. Через 19 лет, в 1784 году, универсальный паровой двигатель создает заново английский изобретатель Джемс Уатт и дарит свое открытие миру.
В 1865 году, почти сто лет тому назад, чешский ученый Грегор Мендель доложил обществу естествоиспытателей об открытии законов наследования биологических признаков. Это было столь ново, грандиозно и неожиданно, что «недостаточно образованная» наука того времени не оценила величия наблюдения Грегора Менделя. Оно не нашло отзвука и было забыто. О нем никто не упоминал в печати много лет.
Прошло три с половиной десятилетия… Менделевские законы были открыты вновь одновременно тремя учеными, которые работали независимо друг от друга и не знали исследований Менделя.
В самом начале 1900 года голландец Гуго де Фриз опубликовал результаты своих опытов — он снова открыл законы наследования. В одной из своих статей Гуго де Фриз писал, что о трудах Менделя он узнал лишь после завершения своих экспериментов.
В апреле 1900 года аналогичные результаты получил немецкий ботаник Карл Корренс. Он тоже считал себя первооткрывателем.
В июне 1900 года австрийский биолог Эрих Чермак совершил то же самое открытие. И он о работах Менделя ничего не знал.
А вот еще пример. В 1896 году итальянец Гульельмо Маркони приезжает в Англию и предлагает правительству приборы беспроволочного телеграфа. Они основаны на электромагнитных волнах Герца. Он берет патент на радиосвязь.
В этом же году в Русском физико-химическом обществе выступает Александр
Ученый должен стараться сразу познакомить мир со своим открытием или изобретением. Не забыв при этом, разумеется, и обеспечить приоритет своей страны.
Перечислять независимые исследования можно бесконечно. Не будем делать этого.
В иммунологии в 1953 году также одновременно было совершено важное открытие в двух разных местах, двумя учеными независимо друг от друга. Это были чех Милан Гашек и англичанин Питер Медавар.
Милан Гашек
Этот раздел мне хотелось назвать «Милан Гашек едет на ферму», потому что именно с поездки на ферму началась работа, которая привела к открытию. Но я не назвал так, потому что главное, конечно, не поездка, а исследование и его итоги. Тем не менее начинать рассказ надо сначала, с поездки.
Летом 1952 года молодой сотрудник одной из лабораторий Института экспериментальной биологии Чехословацкой академии наук в Праге Милан Гашек поехал на ферму. И все началось… Во всяком случае, так утверждает сам Гашек.
— Как началось исследование? — спросил я его в одну из наших встреч.
— Мы поехали на ферму, — ответил Милан.
— На какую ферму?
— На птичью, — ответил он со смешным, но очень приятным чешским акцентом.
И было в самом деле так.
В лаборатории задумали интересное исследование. Не совсем было ясно — вернее, совсем было не ясно, что получится, если в период эмбрионального развития двум зародышам сделать общую систему кровообращения. Так, чтобы в период, когда самостоятельные организмы еще не создались, кровь одного из них проходила через кровеносные сосуды другого, и наоборот. Главное здесь не столько общая система кровообращения, сколько общая кровь. Системы кровообращения различны, но в одном месте соединяются, и кровь обобществляется.
Не ясно было, возможно ли создать такую модель. Не ясно было, жизнеспособна ли такая модель. Не ясно было (если окажется жизнеспособной), отразится ли эта операция на длительности жизни. Не ясно было, как скажутся в дальнейшей самостоятельной жизни (если такая наступит) взаимное влияние двух зародышей разных пород.
Поставить такой эксперимент на кроликах, собаках или любых других млекопитающих казалось невозможным. Ведь эмбрионы млекопитающих развиваются в матке материнского организма. Как соединить в эксперименте кровеносные системы двух эмбрионов, развивающихся в разных материнских организмах? Невозможно…
Совсем другое дело птицы!
Зародыши птиц куда доступнее. Они развиваются отдельно от матери. Их можно вообще растить без матери. Растить зародышей, а не младенцев-птенцов, которых и у млекопитающих можно вырастить без матери. Зародыши птиц отделены от мира лишь тонкой яичной скорлупой. Под скорлупой на одной из наружных оболочек зародыша развивается сеть кровеносных сосудов, связанная с системой кровообращения непосредственно тела зародыша.
Приблизительно к 8-му дню инкубации яйца при 37 градусах и развивается эта оболочка. Называется она «хорионаллантоисная мембрана». Если после 8-го дня в скорлупе двух яиц выпилить окошки, можно непосредственно соединить эти мембраны.