Шаг за шагом. Транзисторы
Шрифт:
Корпус транзисторов с обозначением «П» герметизируется менее совершенным способом — электроконтактной сваркой. Никаких отличий в параметрах транзисторов с обозначением «П» и «МП» не существует — транзистор МП41, например, полностью соответствует транзистору П41.
Данные некоторых типов транзисторов приведены в таблице 10. В этой таблице вы найдете предельно допустимые режимы (коллекторный ток Iк, напряжение Uэк между эмиттером и коллектором и мощность рассеивания на коллекторе Рк), которые превышать нельзя. Напряжение на коллекторе указано в таблицах со знаками «+» или «—». Это еще одно напоминание о полярности напряжения
Рис. 94. Транзисторы разной структуры питаются напряжениями различной полярности.
На коллекторе транзистора р-n-р должен быть «минус», на коллекторе транзистора n-р-n — «плюс»; транзистор р-n-р отпирается «минусом» на базе, а запирается «плюсом»; транзистор n-р-n наоборот — отпирается «плюсом» и запирается «минусом»; в транзисторе р-n-р ток идет от эмиттера через базу к коллектору (именно так движутся дырки), а в транзисторах n-р-n — от коллектора через базу к эмиттеру (не забудьте, речь идет только об условном направлении тока, о том, как нужно «водить пальцем» по схеме; см. стр. 142).
В наши таблицы входят некоторые параметры транзисторов, и прежде всего коэффициент усиления по току β. В официальных таблицах во многих случаях указывают коэффициент усиления по току α в схеме ОБ. Мы же пересчитали его в коэффициент β (рис. 72) и сделали наши таблицы хотя и не похожими на официальные, но зато более удобными.
В таблице 10 приводится величина обратного тока коллектора Iко. Вы, конечно, помните, что всегда желательно, чтобы Iко был как можно меньше. Хотя бы потому, что чем меньше этот ток, тем в меньшей степени режим транзистора зависит от температуры (рис. 88). Приведенная в таблицах величина Iко официально называется наибольшей, фактически Iко бывает меньше, чем указано в таблицах.
В таблицу 10 включена также предельная частота усиления fα. Этот параметр указывает, на какой частоте коэффициент усиления α падает примерно на 30 %. На частотах, больших, чем fα, усиление уменьшается еще резче, и транзистор перестает работать (рис. 92). Граничная частота fα, как и сам коэффициент а, относится лишь к схеме ОБ; для схемы ОЭ граничная частота значительно (примерно в β раз) меньше.
Если внимательно присмотреться к таблицам с данными транзисторов, то можно заметить, что многие разные типы приборов имеют довольно близкие параметры и предельные режимы, в то время как даже в пределах одного и того же типа транзисторов параметры могут заметно различаться. Все это говорит о том, что в случае необходимости можно довольно широко заменять один тип транзистора другим. Так, почти во всех схемах, о которых будет рассказано дальше, вместо транзисторов П13 можно применить любые другие маломощные транзисторы. Лишь в некоторых случаях при этом придется подогнать режим, заменив, например, резистор в цепи базы, через который подается начальное отрицательное смещение.
Точно так же можно заменять высокочастотные транзисторы,
Чтобы хорошо освоиться с транзисторами, полезно периодически просматривать таблицы их параметров, а также рисунки, где указано расположение выводов эмиттера базы и коллектора (рис. 95). Это, конечно, не самое веселое занятие, но зато оно через некоторое небольшое время даст очень важный результат: вы будете и без справочника знать, что собой представляют важнейшие типы полупроводниковых приборов, а значит, сможете легче разбирать транзисторные схемы.
Рис. 95. Основные типы транзисторов (ЦМ — цветная метка).
У начинающего радиолюбителя, который выбирает тему для своей первой практической работы и не преследует при этом каких-то определенных целей, есть много разных вариантов «начала». Можно, например, построить несложную радиолу, простейший прибор электронной автоматики, электронный музыкальный инструмент на одном транзисторе или, наконец, самую популярную транзисторную самоделку — миниатюрный приемник.
Правда, в последнее время, когда радиопромышленность буквально завалила магазины транзисторными приемниками — простыми и сложными, дешевыми и дорогими, — интерес любителей к самодельному приемнику заметно уменьшился.
А зря. Во всяком случае, для начинающего любителя, делающего первые шаги, приемник, пожалуй, самый удачный объект самостоятельной практической работы.
Во-первых, приемник легко допускает усложнение — можно постепенно, шаг за шагом, переходить от простых схем к более сложным. Можно, например, собрать приемник на одном транзисторе, затем добавить к нему еще один усилительный каскад, затем еще один и т. д. (рис. 96).
Рис. 96. Приемники прямого усиления прежде всего различаются числом каскадов усиления высокой и низкой частот.
Во-вторых, в приемнике вы встретитесь с многими популярными элементами, в известной мере общими для электронной аппаратуры: усилителем ВЧ, усилителем НЧ, согласующим трансформатором, разнообразными фильтрами, выпрямителем, детектором и др.
И, наконец, в-третьих, делая приемник, вы можете довольно быстро получить «плату за страх». Приняв несколько станций, услышав речь или музыку из своего собственного, своими руками сделанного приемника, вы испытаете неповторимое радостное чувство победителя, и электроника уже не будет казаться вам страшной и недоступной. Уже из-за одного этого — из-за возможности сравнительно быстро и просто получить практический результат и преодолеть чувство страха перед электронными схемами — есть прямой смысл отдать предпочтение простейшему самодельному приемнику и именно с него начинать свой путь в практическую электронику.