Чтение онлайн

на главную - закладки

Жанры

Шелест гранаты

Прищепенко Александр Борисович

Шрифт:
Рис. 5.22. Такой импульс получали от спектрометра опытах на полигоне

Дело в том, что для различных длин волн имеются благоприятные и неблагоприятные направления излучения. Если «завить» проводник в петлю (изготовить магнитный диполь), то, в зависимости от расположения на нем минимаксов токовой волны, вблизи будут наблюдаться и минимаксы магнитного поля и излучения. Число таких минимаксов будет зависеть от соотношения длин: проводника, из которого изготовлен диполь и токовой волны, причем, чем большее число минимаксов тока укладывается на длине диполя, тем больше число «лепестков» излучения.

Проиллюстрируем это простейшее качественное описание (рис. 5.23). Цифры под диаграммами — отношения размера петли-антенны к длине волны, а длина ординаты, проведенной из центра любой из диаграмм, пропорциональна плотности потока энергии

в направлении ее проведения. Но каждая из этих диаграммы приведена для случая одной токовой волны, а если этих воли несколько? Наложите друг на друга хотя бы четыре диаграммы рис. 5.23, длины волн для которых различаются в пределах всего-то одного порядка! А ведь даже в узком диапазоне измерений спектрометра регистрируется излучение мириадов гармоник. Отражение от земли еще более усложняет распределение.

Выход был один — набирать обширную статистику опытов. Нечего и говорить, что стоил этот процесс недешево.

…Опыт готовят долго, но вот датчики и кабели подсоединены, и всех загнали в бункер. Кнопка нажата; на взрыв не смотрят, это опасно. Видна отраженная от стен вспышка. Через доли секунды воздух на мгновение становится тугим и бьет по ушам. Близкая детонация разгоняет соломинку так, что она втыкается в сталь. Ударная волна сожмет самую прочную сталь, а следующая за ней волна разрежения «растащит» стальной цилиндр, превратив его в подобие полена, разваленного колуном (рис. 5.24), причем внутри «полена» сохранится структура, напоминающая древесные волокна. На дистанции около метра от взрыва поток газов до песчинки счищает почву с корня дерева (иногда этим пользуются, оставляя вблизи заряда «сувениры»; при инструктаже невредно напомнить, что так же чисто могут быть «обдуты» и мышцы с кисти руки). Наконец, гром взрыва умирает, сделав слышным шелест летящих осколков — остатков того, что еще несколькими мгновениями ранее было генератором, собранным вашими руками. Первый взгляд — на осциллографы: есть ли сигналы от датчиков тока, от спектрометров.

Рис. 5.23. Диаграмма направленности излучения простейшего магнитного диполя

Потом все бегут к мишеням…

Принесли плоды (хотя, как оказалось — несъедобные) мучения с источниками первичных токовых импульсов: ЦУВИ на испытаниях 1990 года впервые был представлен полностью автономным устройством Е-29, включавшим, помимо собственно излучателя, ФМГ (генератор начального импульса тока) и ВМГ — усилитель этого импульса (рис. 5.25). Все три элемента испытывались вначале порознь. Излучатель показал неплохие результаты при воздействии на мины, а, кроме того, при его срабатывании была временно выведена из строя старая, а потому довольно стойкая РЛС П-12, располагавшаяся в десятках метров от взрыва. Но повторить такое достижение при подрыве полностью укомплектованной сборки не удалось. Причин виделось две: случайная и не очень. Случайная была аналогичной той, которая вызывала разброс показаний спектрометра: неконтролируемые повороты сборки в разных опытах. Другую объясняли расчеты, наконец, завершенные группой Бармина: оптимум излучения характеризовался весьма «острой» зависимостью от начальных параметров, особенно — от индукции магнитного поля в РТ (рис. 5.26). Даже незначительное отклонение от номинальных значений генерируемого ФМГ тока или коэффициента усиления ВМГ вело к весьма существенным неблагоприятным изменениям в режиме излучения ЦУВИ. Разброс характеристик устройств энергообеспечения была явно неудовлетворительным: для ФМГ — до 30 % по току, а для С ВМГ (причем даже для варианта, изготовленного в Арзамасе-16, где культура производства неизмеримо выше, чем на всех серийных заводах) — около 10 % по коэффициенту усиления. И ФМГ и СВМГ нуждались в кропотливой «доводке», сопряженной с огромным расходом времени и средств.

Рис. 5.24. Стальной цилиндр, сжатый ударной волной, а потом «растащенный» волной разрежения
Рис. 5.25. Сборка Е-29 — полностью автономный прототип электромагнитного боеприпаса, включающий ферромагнитный генератор для получения начального импульса тока, усилитель тока (ВМГ) и цилиндрический ударно-волновой излучатель. Рядом видны элементы магнитопровода ФМГ

Состоялся дебют задуманного в Москве СВМГ с малоемкостным конденсатором в качестве нагрузки, получившего название взрыво-магнитного генератора частоты (ВМГЧ, рис. 5.27).

Как мы знаем, магнитный поток выпустить непросто — надо разорвать обмотку взрывающегося ВМГ, да еще успеть изолировать разрыв. Но можно создать изолированный разрыв заранее, включив в контур высоковольтный конденсатор 1, соединив его с медной трубой 2 (снаряженной ВВ 3) и соосной грубо спиралью 4. Как и в СВМГ, взрыв расширяет трубу, образуя конус, который и ударяет по обмотке, вызывая протекание тока от заранее заряженного конденсатора. Далее точка контакта на основании конуса движется по виткам спирали,

продавливая их изоляцию и закорачивая виток за витком, усиливая при этом ток, который осциллирует, т. к. емкость контура существенна. Иногда обмотку ВМГЧ делают из нескольких проводов, подсоединяя каждый к отдельному конденсатору: из-за рассогласования токов в проводах, излучение рассеивается в этом случае более равномерно. Оценив период колебаний (для единиц микрогенри и нанофарад), получим сотни наносекунд, что не очень благоприятно (волны в сотни раз «длиннее» самого ВМГЧ). Но эти «несущие» волны — не основные в излучении: компрессия поля трубой, усиливая ток тем больше, чем выше его мгновенное значение, приводит к появлению «быстрых» гармоник.

Рис. 5.26. Зависимость интегральной энергии излучения ЦУВИ от начальных параметров сжатия магнитного поля
Рис. 5.27. Схема и общий вид взрывомагнитного генератора частоты

Представим, что, находясь в уличной «пробке», мы плавно тронули свою машину и притормозили у стоящей впереди. В следующий раз, едва мы сняли ручник, в нас «въехали» сзади; доли секунды — и мы «целуем» стоящую впереди. Как пройденные расстояния, так и времена движения в обоих случаях близки, но ваш организм подсказывает, что в элементах движения имелись и отличия: в последнем случае он сначала «ускорился», как от сильного пинка, потом — парил, блаженствуя, и, наконец — «замедлился», как бы упав. Подсознательно сложное движение представлено, как сумма более простых. Это и есть задача гармонического анализа, основы которого заложил французский математик Симон Фурье: любая функция может быть представлена как сумма синусоид (гармоник). Вообще-то можно произвести разложение и в ряд других функций, не синусов, но для расчета мощности излучения удобны именно они, потому что эта задача для тока синусоидальной формы, протекающего через несколько витков провода, давно решена. Именно на гармониках больших частот («быстрых») и реализуется основной выход энергии РЧЭМИ.

Сделать свою модель ВМГЧ пригодной для численных расчетов Щелкачев ранее не мог потому, что не была известна такая характеристика, как интегральные потери на излучение, которые можно было представить, введя в модель характеризующее их эквивалентное сопротивление. Причины же других потерь были такими же, как и в хорошо исследованных СВМГ: диффузия магнитного поля, сопротивление изоляции проводов. Потери не связанные с излучением можно было определить из осциллограмм тока, который генерировался СВМГ с точно такой же, как и ВМГЧ обмоткой, по работающим на индуктивную нагрузку, и, следовательно, не излучающим (рис. 5.28,а). Из осциллограмм же, полученных при работе спирали на емкостную нагрузку, которые все стали называть «рыбами» (рис. 5.28,6), можно было определить суммарное сопротивление потерь, как излучательных, так и обусловленных иными причинами. Оставалось только найти разность этих величин в каждый из моментов работы ВМГЧ. Нельзя назвать такой метод безупречным, но это было лучше, чем ничего.

Рис. 5.28. Осциллограммы: а — производной тока во взрывомагнитном генераторе частоты («рыба» — на жаргоне разработчиков электромагнитных боеприпасов); б — производной тока в спирали с обмоточными данными, точно соответствующими взрывомагнитному генератору частоты, но с индуктивной нагрузкой вместо малоемкостной; в — полу- " волн производной тока, во взрывомагнитном генераторе частоты, снятая на значительно более быстрой развертке, чем осциллограмма «а»; на последней осциллограмме видно, что форма полуволн ломаная, несинусоидальная, а значит, в разложении существенна доля быстрых гармоник
Рис. 5.29. Частотно-мощностное распределение излучения ВМГЧ в различные моменты его работы (время в микросекундах, прошедшее с момента замыкания контура, указано для каждого спектра) Закон усиления тока в спирали, замыкаемой трубой, был известен из трудов А. Сахарова. Бешеные «впрыскивания» тока ломают форму колебаний (рис. 5.28в), а луч осциллографа слишком медлителен, чтобы воспроизвести ее скачки. Достоверна лишь огибающая — линия, соединяющая токовые амплитуды. Она служит для их нормировки, когда ток представляют как сумму уже «чистых» синусоид (гармоник). Остальное понятно: для каждой гармоники тока известной частоты и амплитуды вычисляют мощность излучении через витки обмотки, в данный момент еще не закороченные ударом трубы. Сумму (спектр) подгоняют (а как же!) под данные спектрометров. Гармоник с частотами от сотен до десятков тысяч мегагерц (много большими частоты «несущей» волны) к концу работы становится все больше (рис. 5.29), растут и потери на излучение, «подсаживая» ток (рис. 5.286). Пиковая мощность излучения ВМГЧ меньше, чем у ЦУВИ, но время генерации (десятки микросекунд) на четыре порядка больше и энергия РЧЭМИ даже выше.
Поделиться:
Популярные книги

Звездная Кровь. Изгой

Елисеев Алексей Станиславович
1. Звездная Кровь. Изгой
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Звездная Кровь. Изгой

Последний наследник

Тарс Элиан
11. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний наследник

Я – Стрела. Трилогия

Суббота Светлана
Я - Стрела
Любовные романы:
любовно-фантастические романы
эро литература
6.82
рейтинг книги
Я – Стрела. Трилогия

Светлая. Книга 2

Рут Наташа
2. Песни древа
Фантастика:
постапокалипсис
рпг
фэнтези
5.00
рейтинг книги
Светлая. Книга 2

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

Холодный ветер перемен

Иванов Дмитрий
7. Девяностые
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Холодный ветер перемен

Тринадцатый VII

NikL
7. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый VII

Пипец Котенку! 3

Майерс Александр
3. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 3

Эволюционер из трущоб. Том 2

Панарин Антон
2. Эволюционер из трущоб
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
Эволюционер из трущоб. Том 2

Метатель. Книга 4

Тарасов Ник
4. Метатель
Фантастика:
боевая фантастика
попаданцы
постапокалипсис
рпг
фэнтези
5.00
рейтинг книги
Метатель. Книга 4

Держать удар

Иванов Дмитрий
11. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Держать удар

Законы Рода. Том 9

Андрей Мельник
9. Граф Берестьев
Фантастика:
городское фэнтези
попаданцы
аниме
дорама
фэнтези
фантастика: прочее
5.00
рейтинг книги
Законы Рода. Том 9

Кодекс Крови. Книга ХI

Борзых М.
11. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХI

Темный Лекарь 8

Токсик Саша
8. Темный Лекарь
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Темный Лекарь 8