Чтение онлайн

на главную - закладки

Жанры

Схемотехника аналоговых электронных устройств

Красько А. С.

Шрифт:

F = (Rг + Rш + GшRг + 2FшRг)/Rг.

Исследуя это выражение на экстремум, определяем оптимальное сопротивление источника сигнала Rг opt, при котором коэффициент шума каскада F минимален:

При этом в большинстве случаев оказывается, что Rг opt не

совпадает с Rг, оптимальным с точки зрения получения необходимой fв каскада (Rг opt>Rг). Выходом из данной ситуации является включение между первым и вторым каскадами цепи противошумовой коррекции (рисунок 8.3).

Рисунок 8.3. Простая противошумовая коррекция

Введением противошумовой коррекции добиваются повышения коэффициента передачи каскадов в области ВЧ (путем внесения корректирующей цепью затухания на НЧ и СЧ), компенсируя тем самым спад усиления на ВЧ за счет высокоомного Rг opt.

Приближенно параметры противошумовой коррекции можно определить из равенства ее постоянной времени RC постоянной времени τв некорректированного каскада.

Расчет шумов каскадно соединенных четырехполюсников (многокаскадного усилителя) обычно сводится к расчету коэффициента шума входной цепи и входного каскада. Первый каскад в таком усилителе работает в малошумящем режиме, а второй и другие каскады в обычном режиме.

Расчет шумов в общем случае представляет собой сложную задачу, решаемую с помощью ЭВМ. Для ряда частных случаев шумовые параметры могут бить рассчитаны по соотношениям, приведенным в [16].

8.4. Анализ чувствительности

Чувствительностью называется реакция различных устройств на изменение параметров ее компонент.

Коэффициент чувствительности (функция чувствительности или просто чувствительность) представляет собой количественную оценку изменения параметров устройства (в т.ч. и АЭУ) при заданном изменении параметров его компонент.

Необходимость расчета функции чувствительности возникает при необходимости учета влияния на характеристики АЭУ факторов окружающей среды (температуры, радиации и т.д.), при расчете требуемых допусков на параметры компонент, при определении процента выхода ИМС, в задачах оптимизации, моделирования и т.д.

Функция чувствительности Si параметра устройства y к изменению параметра компонента xi определяется как частная производная

Данное выражение получено на основе разложения в ряд Тейлора функции нескольких переменных

, где

Пренебрегая частными производными второго и более порядка, получаем связь функции чувствительности и отклонения параметра

:

Существуют разновидности функции чувствительности:

 ◆ абсолютная чувствительность

, абсолютное отклонение при этом равно
;

◆ относительная

чувствительность
, относительное отклонение равно
;

◆ полуотносительные чувствительности

,
.

Выбор вида функции чувствительности определяется видом решаемой задачи, например, для комплексного коэффициента передачи

 относительная чувствительность равна относительной чувствительности модуля (действительная часть) и полуотносительной чувствительности фазы (мнимая часть):

Для простых схем вычисление функции чувствительности может осуществляться прямым дифференцированием схемной функции, представленной в аналитическом виде. Для сложных схем, получение аналитического выражения схемной функции представляет собой сложную задачу, возможно применение прямого расчета функции чувствительности через приращения. В этом случае необходимо проводить n анализов схемы, что для сложных схем весьма нерационально.

Существует косвенный метод расчета чувствительности по передаточным функциям, предложенный Быховским [17]. Согласно этому методу, функция чувствительности, например, прямого коэффициента передачи равна произведению функций передачи с входа схемы до элемента, относительно которого ищется чувствительность, и передаточной функции "элемент — выход схемы" (рисунок 8.4а).

Рисунок 8.4. Косвенный метод расчёта функций чувствительности

Так как расчет функции чувствительности сводится к расчету передаточных функций, то для их нахождения возможно применение, например, обобщенного метода узловых потенциалов. Косвенный метод расчета по передаточным функциям позволяет находить функции чувствительности более высоких порядков. На рисунке 8.4б проиллюстрировано нахождение функции чувствительности второго порядка. В общем же существует n! путей передачи сигнала, каждый из которых содержит n+1 сомножителей.

Ниже описывается метод расчета функции чувствительности, сочетающий прямой метод дифференцирования и косвенный по передаточным функциям, позволяющий за один анализ находить чувствительность к n элементам схемы [18]. Рассмотрим данный способ на примерах получения выражений для абсолютной чувствительности первого порядка S-параметров электронных схем, описанных матрицей проводимости [Y].

В матричном представлении характеристики электронных схем, в том числе и параметры рассеяния [S], определяются в виде отношений алгебраических дополнений матрицы [Y] (см. подраздел 7.2). Изменяемый параметр входит при этом в некоторые элементы алгебраических дополнений. Определение функции чувствительности сводится в этом случае к нахождению производных от отношений алгебраических дополнений (или алгебраических дополнений и определителя) по элементам, в которых содержится изменяемый параметр. В случае, когда изменяемый параметр входит в элементы дополнений определителя функционально, чувствительность определяется как сложная производная.

Для определения производных алгебраических дополнений по изменяемым параметрам входящих в них элементов воспользуемся теоремой, утверждающей, что производная определителя по какому-либо элементу равна алгебраическому дополнению этого элемента. Доказательство теоремы основано на разложении определителя по Лапласу

Общее выражение для S-параметров через алгебраические дополнения имеет вид (см. подраздел 7.2)

Sij = kijΔji/Δ – δij.

Поделиться:
Популярные книги

Я уже князь. Книга XIX

Дрейк Сириус
19. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я уже князь. Книга XIX

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4

Часовая башня

Щерба Наталья Васильевна
3. Часодеи
Фантастика:
фэнтези
9.43
рейтинг книги
Часовая башня

Измена. Право на любовь

Арская Арина
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на любовь

Ты не мой Boy 2

Рам Янка
6. Самбисты
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Ты не мой Boy 2

Душелов. Том 2

Faded Emory
2. Внутренние демоны
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Душелов. Том 2

Хозяйка собственного поместья

Шнейдер Наталья
1. Хозяйка
Фантастика:
фэнтези
5.00
рейтинг книги
Хозяйка собственного поместья

Отморозки

Земляной Андрей Борисович
Фантастика:
научная фантастика
7.00
рейтинг книги
Отморозки

Потомок бога 3

Решетов Евгений Валерьевич
3. Локки
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Потомок бога 3

Мама из другого мира. Чужих детей не бывает

Рыжая Ехидна
Королевский приют имени графа Тадеуса Оберона
Фантастика:
фэнтези
8.79
рейтинг книги
Мама из другого мира. Чужих детей не бывает

Держать удар

Иванов Дмитрий
11. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Держать удар

Переиграть войну! Пенталогия

Рыбаков Артем Олегович
Переиграть войну!
Фантастика:
героическая фантастика
альтернативная история
8.25
рейтинг книги
Переиграть войну! Пенталогия

Надуй щеки! Том 3

Вишневский Сергей Викторович
3. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки! Том 3

Последняя Арена 2

Греков Сергей
2. Последняя Арена
Фантастика:
рпг
постапокалипсис
6.00
рейтинг книги
Последняя Арена 2