Шпаргалка по общей электронике и электротехнике
Шрифт:
В настоящее время электросварка, как дуговая, так и методом сопротивления, прочно вошла в промышленность и получила очень широкое распространение. Сваривают листовую и угловую сталь, балки и рельсы, мачты и трубы, фермы и котлы, суда и т. д. Сваркой выполняют новые и ремонтируют старые детали из стали, чугуна и цветных металлов.
Разработаны новые методы применения электросварки: подводная электросварка; автоматическая сварка; сварка с помощью переменного тока (аппарат имеет особую деталь – осциллятор, назначение которого заключается в том, чтобы вырабатывать переменный
При замыкании и размыкании рубильником или выключателем электрических цепей, а также замыкании и размыкании контактов приборов и аппаратов электрическая искра, возникающая между контактами, и нередко следующая за ней электрическая дуга плавят металл, и контакты обгорают или свариваются, нарушая работу установки. Это явление называется электрической эрозией. Искра при своем появлении как бы «грызет» металл. Для борьбы с искрой иногда между контактами параллельно искровому промежутку включают конденсатор определенной емкости.
Инженеры Б.Р. Лазаренко и И.Н. Лазаренко использовали свойство электрической искры «грызть металл» в сконструированной ими электроэрозионной установке. Работа установки в основном состоит в следующем. К металлическому стержню подводится один провод от источника напряжения. Другой провод присоединяется к обрабатываемой детали, находящейся в масле. Металлический стержень заставляют вибрировать. Электрическая искра, возникающая между стержнем и деталью, «грызет» деталь, проделывая в ней отверстие, одинаковое с формой сечения стержня (шестигранное, квадратное, треугольное и т. д.).
62. ЭЛЕКТРОМАГНЕТИЗМ
Магнитным полем называется одна из двух сторон электромагнитного поля, возбуждаемая электрическими зарядами движущихся частиц и изменением электрического поля и характеризующаяся силовым воздействием на движущиеся заряженные частицы, а стало быть, и на электрические токи.
Направление магнитных индукционных линий меняется с изменением направления тока в проводнике. Магнитные индукционные линии вокруг проводника обладают следующими свойствами:
1) магнитные индукционные линии прямолинейного проводника имеют форму концентрических окружностей;
2) чем ближе к проводнику, тем гуще располагаются магнитные индукционные линии;
3) магнитная индукция (интенсивность поля)зависит от величины тока в проводнике;
4) направление магнитных индукционных линий зависит от направления тока в проводнике. Направление магнитных индукционных линий вокруг проводника с током можно определить по «правилу буравчика». Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных индукционных линий вокруг проводника.
Магнитное поле характеризуется вектором магнитной индукции, который имеет определенную величину и определенное направление в пространстве.
Линия, касательная к каждой точке которой совпадает с направлением вектора магнитной индукции, называется линией
Произведение магнитной индукции на величину площадки, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции или просто магнитным потоком и обозначается буквой Ф: Ф = BS.Единица измерения – вебер (Вб).
Соленоидом называется проводник, свитый спиралью, по которому пропущен электрический ток. Для определения полюсов соленоида пользуются «правилом буравчика», применяя его следующим образом: если расположить буравчик вдоль оси соленоида и вращать его по направлению тока в витках соленоида, то поступательное движение буравчика покажет направление магнитного поля.
Соленоид, внутри которого находится стальной (железный) сердечник, называется электромагнитом. Магнитное поле у электромагнита сильнее, чем у соленоида, так как кусок стали, вложенный в соленоид, намагничивается и результирующее магнитное поле усиливается. Полюсы у электромагнита можно определить, так же как у соленоида, по «правилу буравчика».
Магнитный поток соленоида (электромагнита) увеличивается с увеличением числа витков и тока в нем. Намагничивающая сила зависит от произведения тока на число витков.
Увеличить магнитный поток соленоида можно следующими путями:
1) вложить в соленоид стальной сердечник, превратив его в электромагнит;
2) увеличить сечение стального сердечника электромагнита (так как при данных токе, напряженности магнитного поля, и, стало быть, магнитной индукции увеличение сечения ведет к росту магнитного потока);
3) уменьшить воздушный зазор электромагнита (так как при уменьшении пути магнитных линий по воздуху уменьшается магнитное сопротивление).
63. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ
Явление ЭДС в контуре при пересечении его магнитным полем называется электромагнитной индукцией и было открыто английским физиком М. Фа-радеем в 1831 г.
Проводник, по которому течет электрический ток, окружен магнитным полем. Если изменять величину или направление тока в проводнике или размыкать и замыкать электрическую цепь, питающую проводник током, то магнитное поле, окружающее проводник, будет изменяться. Изменяясь, магнитное поле проводника пересекает этот же самый проводник и наводит в нем ЭДС. Это явление называется самоиндукцией. Сама индуктированная ЭДС называется ЭДС самоиндукции.
Индуктированная ЭДС возникает в следующих случаях.
1. Когда движущийся проводник пересекает неподвижное магнитное поле или, наоборот, перемещающееся магнитное поле пересекает неподвижный проводник; или когда проводник и магнитное поле, двигаясь в пространстве, перемещаются относительно другого.
2. Когда переменное магнитное поле одного проводника, действуя на другой проводник, индуктирует в нем ЭДС.
3. Когда изменяющееся магнитное поле проводника индуктирует в нем самом ЭДС (самоиндукция).