Чтение онлайн

на главную - закладки

Жанры

Сигнал и шум. Почему одни прогнозы сбываются, а другие - нет

Сильвер Нейт

Шрифт:

Допустим, до столкновения первого самолета с башней наши расчеты вероятности террористической атаки на высотные здания Манхэттена составляли лишь 1 шанс из 20 тыс., или 0,005 %. Однако мы также должны были считать достаточно низкой вероятность ситуации, при которой самолет столкнулся бы с башней Всемирного торгового центра по ошибке. Эта цифра может быть рассчитана эмпирически. За период длительностью 25 тыс. дней до событий 11 сентября, в течение которых осуществлялись полеты над Манхэттеном, произошло всего два подобных случая {576} : столкновение с Эмпайр-стейт-билдинг в 1945 г. и с башней на Уолл-стрит, 40, в 1946 г. Следовательно, возможность подобного инцидента составляла примерно 1 шанс из 12 500 в любой случайный день. Если по этим цифрам сделать расчеты с использованием теоремы Байеса (табл. 8.3a),

то вероятность террористической атаки повышалась с 0,005 до 38 % в момент столкновения первого самолета со зданием.

576

Если отсчитать 25 тыс. дней до 11 сентября 2001 г., мы окажемся примерно в 1942 г.

Таблица 8.3а. Пример расчета вероятности террористической атаки по теореме Байеса

Однако идея, заложенная в теорему Байеса, заключается в том, что мы не корректируем свои расчеты вероятности только один раз. Мы делаем это постоянно по мере появления новых свидетельств. Таким образом, наша апостериорная вероятность террористической атаки после столкновения первого самолета, равная 38 %, становится нашей априорной возможностью столкновения со вторым.

И если вы еще раз проведете расчеты после столкновения второго самолета с башней Всемирного торгового центра, то увидите, что вероятность террористической атаки 99,99 % сменяется почти полной уверенностью в этом событии. Один несчастный случай в яркий солнечный день в Нью-Йорке был крайне маловероятен, но второй практически не мог не произойти (табл. 8.3б), как мы внезапно и с огромным ужасом поняли.

Таблица 8.3б. Пример расчета вероятности террористической атаки по теореме Байеса

Я сознательно выбрал в качестве примеров довольно сложные случаи – террористические атаки, рак, супружеская измена, – поскольку хочу продемонстрировать масштаб проблем, к решению которых может быть применено байесовское мышление. Теорема Байеса – это не волшебная формула. В ее самой простой формуле, которую мы приводим в этой книге, используются простые арифметические действия по сложению, вычитанию, делению и умножению. Но для того, чтобы она дала нам полезный результат, мы должны снабдить ее информацией, в частности нашими расчетами априорных вероятностей.

Однако теорема Байеса заставляет нас думать о вероятности событий, происходящих в мире, даже когда речь заходит о вопросах, которые мы не хотели бы считать проявлением случайности. Она не требует, чтобы мы воспринимали мир как внутренне, метафизически неопределенный: Лаплас считал, что все, начиная от орбит планет и заканчивая движением мельчайших молекул, управляется упорядоченными ньютоновскими правилами. И тем не менее он сыграл важную роль в развитии теоремы Байеса. Скорее можно сказать, что эта теорема связана с эпистемологической неопределенностью – границами наших знаний.

Проблема ложноположительного срабатывания [108]

Когда мы не можем думать подобно истинным байесовцам, ложноположительное срабатывание начинает представлять собой проблему не только для маммографии, но и для всей науки. В введении я упомянул работу врача-исследователя Джона П. А. Иоаннидиса. В 2005 г. Иоаннидис опубликовал влиятельный труд под названием «Почему самые широко публикуемые выводы исследований неверны» {577} , в котором процитировал множество статистических и теоретических аргументов, подтверждавших, что (как и следует из названия) большинство гипотез, признанных истинными в медицине и большинстве других научных профессий, являются, по сути, ложными.

108

Ложноположительное срабатывание (ложное срабатывание (false positive)

или ошибка первого рода в статистике) – ошибочное детектирование события, которого на самом деле не было. Слово «положительный» в данном случае не имеет отношения к тому, желательно или нежелательно само событие.

577

John P. A. Ioannidis, «Why Most Published Research Findings Are False», PLOS Medicine, 2, e124, August 2005. http://www.plosmedicine.org/article/info:%20doi/10.1371/journal.pmed%20.0020124.

Гипотеза Иоаннидиса, как мы уже сказали, кажется одной из немногих истинных. Так, сотрудники компании Bayer Laboratories обнаружили, что не могут повторить в ходе собственных экспериментов до двух третей положительных заключений, опубликованных в медицинских журналах {578} . Еще один способ проверить правдивость выводов исследования состоит в том, чтобы понять, насколько точными являются результаты предсказаний в реальном мире, И, как мы видим на множестве примеров, приведенных в этой книге, часто выводы не выдерживают испытание реальностью. Судя по всему, частота появления неудачных предсказаний во множестве областей, от сейсмологии до политических наук, оказывается невероятно высокой.

578

Brian Owens, «Reliability of ‘New Drug Target’ Claims Called into Question», NewsBlog, Nature, September 5, 2011. http://blogs.nature.com/news/2011/09/reliability_of_new_drug_target.html.

«За последние 20 лет благодаря геометрическому росту доступной информации, развитию геномики и других технологий мы получили возможность измерять миллионы и миллионы потенциально интересных переменных, – рассказал мне Иоаннидис. – Можно ожидать, что мы сможем использовать эту информацию для того, чтобы заставить предсказания работать на нас. Я не говорю, что мы не достигли никакого прогресса. Принимая во внимание наличие миллионов научных работ, признать это было бы крайне стыдно. Однако совершенно очевидно, что мы не сделали миллионов открытий. Большинство работ не вносят реального вклада в развитие знания».

Вот почему наши предсказания могут оказаться более подверженными неудаче в эру Больших данных. С экспоненциальным ростом объема доступной информации по той же экспоненте растет и количество гипотез, требующих изучения. Например, правительство США в настоящее время публикует сведения о 45 тыс. экономических статистических показателей. Если вы захотите протестировать связи между всеми комбинациями из пар этих показателей – есть ли, допустим, причинно-следственная связь между ставкой банковского кредитования и уровнем безработицы в Алабаме? – то вам потребуется протестировать не меньше миллиарда гипотез [109] . Однако количество осмысленных связей в данных, говорящих о наличии причинно-следственной связи, а не о корреляции, и позволяющих протестировать то, каким образом мир работает по-настоящему, на много порядков ниже. Истина не растет теми же темпами, что и информация; по сути, в мире сейчас не больше истины, чем было до появления интернета или печатного пресса. Основная часть данных – всего лишь шум, так же как основная часть Вселенной заполнена вакуумом.

109

Количество возможных комбинаций представляет собой половину от произведения 45 000 на 44 999, то есть 1 012 477 500. – Прим. авт.

Тем не менее, как мы знаем из теоремы Байеса, в случаях, когда реальная вероятность возникновения какой-либо болезни в популяции низка (рак груди у молодых женщин; истина в море данных), ложноположительное срабатывание может доминировать в результатах, если только мы не будем достаточно внимательны и осторожны. На рис. 8.3 представлено графическое отображение этой картины. Так, 80 % истинных научных гипотез вполне справедливо признаются истинными, а около 90 % неверных гипотез совершенно справедливо отвергаются. Тем не менее, поскольку истинные открытия возникают крайне редко, оказывается, что около двух третей выводов, которые мы считаем правильными, на самом деле оказываются ложными!

Поделиться:
Популярные книги

Зомби

Парсиев Дмитрий
1. История одного эволюционера
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Зомби

Новый Рал 9

Северный Лис
9. Рал!
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Новый Рал 9

Корсар

Русич Антон
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
6.29
рейтинг книги
Корсар

Надуй щеки! Том 6

Вишневский Сергей Викторович
6. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки! Том 6

Город Богов

Парсиев Дмитрий
1. Профсоюз водителей грузовых драконов
Фантастика:
юмористическая фантастика
детективная фантастика
попаданцы
5.00
рейтинг книги
Город Богов

Черный Маг Императора 13

Герда Александр
13. Черный маг императора
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 13

Прорвемся, опера!

Киров Никита
1. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера!

Газлайтер. Том 14

Володин Григорий Григорьевич
14. История Телепата
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Газлайтер. Том 14

Обгоняя время

Иванов Дмитрий
13. Девяностые
Фантастика:
попаданцы
5.00
рейтинг книги
Обгоняя время

Солдат Империи

Земляной Андрей Борисович
1. Страж
Фантастика:
попаданцы
альтернативная история
6.67
рейтинг книги
Солдат Империи

Возвышение Меркурия. Книга 4

Кронос Александр
4. Меркурий
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Возвышение Меркурия. Книга 4

Найдёныш. Книга 2

Гуминский Валерий Михайлович
Найденыш
Фантастика:
альтернативная история
4.25
рейтинг книги
Найдёныш. Книга 2

Одна тень на двоих

Устинова Татьяна Витальевна
Детективы:
прочие детективы
9.08
рейтинг книги
Одна тень на двоих

Мерзавец

Шагаева Наталья
3. Братья Майоровы
Любовные романы:
современные любовные романы
эро литература
короткие любовные романы
5.00
рейтинг книги
Мерзавец