Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Графы процессов и структур определим следующим образом:

G (P) = G (B,D), G(Pa)=G(B0, ?d), G(Pe)= G(?в, D0),

G( C) = G (A, E), G(Ca) = G (A0, ?e), G (Ce)=G(?a, E0).

* Сформулируем следующий результат.

Теорема 3.9.Графы G(Р), G(С), G(Pa), G(Pe), G(Ca), G(Ce) изоморфны.

Доказательство его следует из очевидного здесь факта: изоморфны между собой множества в каждой тройке множеств: В, В0, ?в; A, A0, ?a; D, D0, ?d; E, E0, ?e.

*
Графы систем определим следующим образом, как прямые суммы:

G (S) = G (P) ? G ( C );

G (Sa) = G(Pa) ? G (Ca);

G(Se) = G(Pe) ? G(Ce).

Теорема 3.10. Графы G(S), G(Sa), G(Se) изоморфны.

Эти графы изоморфны, так как в соответствии с предыдущим результатом изоморфны их части, не пересекающиеся по вершинам и ребрам.

* Графы процесса и структуры также могут быть представлены в виде прямых сумм частей, не пересекающихся по вершинам и ребрам:

G (P) = G(Pa) ? G (Pe); G(C ) = G (Ca) ? G(Ce).

В силу этого можно сформулировать

Теорема 3.11.Графы G (S), G(Sa), G(Se), G(P), G(C) изоморфны.

Взаимосвязи между частями графов G (S), G(Sa), G(Se), G(Р), G (С) определяются выбранными ранее отношениями ?, ?-1, ?, ?-1, ?, ?0 и др. (рис. 3.1а,б,в).

* Полученные результаты позволяют сформировать следующую процедуру декомпозиции при исследовании систем. Вполне очевидно, что переход от графа G (S) к графу G(Sa) или G(Se) означает переход от более сложных задач к более простым. В то же время модель любого системного объекта, в том числе Sa и Se, можно представить в виде модели полной системы и вновь разложить его на модели G(Sa), G(Se) и др. Новая декомпозиция будет означать дальнейшее упрощение задач исследования системы. В то же время при повторной декомпозиции модели, как и при первой., вновь будут определены отношения взаимосвязи между частями модели. Сохраняя отношения взаимосвязи на каждом этапе, можно перейти к системе с более простыми задачами исследования – к «простой» системе, задачи которой разрешимы для исследователя. Затем можно, используя отношения взаимосвязи, перейти к решению задач исходной системы, как к некоторой композиции задач «простых» систем. Возможно, что «простая» система – это система, в которой нецелесообразно выделение дополнительной системы.

При такой декомпозиции не нарушается структура и процесс исследуемой системы, производится как бы расслоение системы. Образно можно определить, что это расслоение модели системы, декомпозиция «по толщине», возможная для математических моделей любых систем, когда каждая вершина и ребро графовой модели могут «расслаиваться» на две части в соответствии с определениями (3.3.5) – (3.3.7).

Описанный способ декомпозиции вполне применим и в сочетании с известными методами.

Комплексы систем

* Предложенная математическая модель общей системы дает возможность описать систему S, имеющую столько вариантов построения, сколько разных изделий или продуктов SF (каждое из которых соответствует одной системе целей F) она должна изготавливать или выпускать. Известно в то же время, что системы, как правило, объединяются в комплексы. Определение

комплекса можно сформулировать с помощью полученных результатов.

* В каждой системе можно выделять, как правило, части (подсистемы) двух видов. В первом случае подсистемы могут образовывать части, предназначенные для изготовления узлов, блоков изделия. В этом случае подсистемой является часть Sai, из этих частей состоит основная система Sa.

В другом случае подсистемы могут образовываться на основе частей системы, предназначенных для обеспечения коммуникаций (складирования и транспортирования), т.е. подсистемой явится часть Sei , из таких частей состоит дополнительная система Se.

Тогда можно сформулировать следующее понятие комплекса.

Пусть имеется некоторое множество систем S(k)={S1, S2, ..., Si, ..., Sk}, (3.3.18)

причем каждая из систем Si может быть описана следующим образом

Si = Sai ? Sei,

т.е., как состоящая из основной Sai и дополнительной Sei систем, которые, в свою очередь, можно представить в виде объединений подсистем:

Sai = ? Saij ; Sei = ? Seij .

Множество систем S(k) является комплексом, если каждая из систем Si ? S(k) имеет общую часть S* хотя бы с одной из систем Sl ? S(K), l ? i, и эта общая часть является одной из подсистем вида Saij или Seij .

Алгоритм применения математических моделей.

* Итак, в общем случае математические модели системы, процесса, структуры, элемента, элементарной структуры, элементарного процесса состоят из двух частей: одна основная, предназначена для реализации целей создания системы (Sa, Pa, Ca и др.), другая служит для обеспечения процессов взаимодействия в системе (Se, Pe, Ce и др.).

* Так, в технологической системе, создаваемой для реализации процессов отбелки хлопчатобумажных тканей, основными элементами а являются реакторы, в которых последовательно происходят процессы пропитки ткани различными растворами. Это процессы b — элементарные процессы достижения целей. Элементы взаимодействия е — это транспортирующие и складирующие элементы, обеспечивающие передачу обрабатываемой ткани от одного процесса пропитки к другому или её хранение до начала следующего процесса, т.е. элементы, обеспечивающие элементарные процессы взаимодействия d во времени и в пространстве. * В тоже время в процессе обработки ткани также необходимо её транспортирование от начала элементарного процесса достижения цели к концу: для этого в основных элементах а, кроме основных частей конструкции а0, обеспечивающих протекание элементарных процессов отбеливания b0, предусматриваются транспортирующие механизмы , обеспечивающие прием ткани от транспорта (склада) на входе процесса, ее перемещение внутри аппарата в соответствии с технологией отбеливания и передачу ткани, прошедшей процесс, на последующие транспортно-складские средства, т.е. обеспечивающие элементарные процессы «взаимодействия между взаимодействиями» ?a.
Поделиться:
Популярные книги

Ваше Сиятельство

Моури Эрли
1. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ваше Сиятельство

На границе империй. Том 4

INDIGO
4. Фортуна дама переменчивая
Фантастика:
космическая фантастика
6.00
рейтинг книги
На границе империй. Том 4

Моя (не) на одну ночь. Бесконтрактная любовь

Тоцка Тала
4. Шикарные Аверины
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Моя (не) на одну ночь. Бесконтрактная любовь

Измена. Верни мне мою жизнь

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Верни мне мою жизнь

Законы Рода. Том 9

Андрей Мельник
9. Граф Берестьев
Фантастика:
городское фэнтези
попаданцы
аниме
дорама
фэнтези
фантастика: прочее
5.00
рейтинг книги
Законы Рода. Том 9

Гарри Поттер (сборник 7 книг) (ЛП)

Роулинг Джоан Кэтлин
Фантастика:
фэнтези
5.00
рейтинг книги
Гарри Поттер (сборник 7 книг) (ЛП)

Миф об идеальном мужчине

Устинова Татьяна Витальевна
Детективы:
прочие детективы
9.23
рейтинг книги
Миф об идеальном мужчине

Жена со скидкой, или Случайный брак

Ардова Алиса
Любовные романы:
любовно-фантастические романы
8.15
рейтинг книги
Жена со скидкой, или Случайный брак

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила

Законы Рода. Том 6

Андрей Мельник
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Судьба

Проскурин Пётр Лукич
1. Любовь земная
Проза:
современная проза
8.40
рейтинг книги
Судьба

Законы Рода. Том 10

Андрей Мельник
10. Граф Берестьев
Фантастика:
юмористическая фантастика
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 10

Аристократ из прошлого тысячелетия

Еслер Андрей
3. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Аристократ из прошлого тысячелетия

Рейдер 2. Бродяга

Поселягин Владимир Геннадьевич
2. Рейдер
Фантастика:
фэнтези
попаданцы
7.24
рейтинг книги
Рейдер 2. Бродяга