Системное программирование в среде Windows
Шрифт:
Рассмотрение двух других объектов синхронизации — таймеров ожидания и портов завершения ввода/вывода — отложено до главы 14. Эти типы объектов требуют использования методик асинхронного ввода/вывода Windows, которые описываются в указанной главе.
Объекты критических участковкода
Как уже упоминалось ранее, объект критического участка кода — это участок программного кода, который каждый раз должен выполняться только одним потоком; параллельное выполнение этого участка несколькими потоками может приводить к непредсказуемым или неверным результатам.
В качестве простого механизма реализации и применения на практике концепции
Объекты CRITICAL_SECTION (CS) можно инициализировать и удалять, но они не имеют дескрипторов и не могут совместно использоваться другими процессами. Соответствующие переменные должны объявляться как переменные типа CRITICAL_SECTION. Потоки входят в объекты CS и покидают их, но выполнение кода отдельного объекта CS каждый раз разрешено только одному потоку. Вместе с тем, один и тот же поток может входить в несколько отдельных объектов CS и покидать их, если они расположены в разных местах программы.
Для инициализации и удаления переменной типа CRITICAL_SECTION используются, соответственно, функции InitializeCriticalSection и DeleteCriticalSection:
Функция EnterCriticalSection блокирует поток, если на данном критическом участке кода присутствует другой поток. Ожидающий поток разблокируется после того, как другой поток выполнит функцию LeaveCriticalSection. Говорят, что поток получил права владения объектом CS, если произошел возврат из функции EnterCriticalSection, тогда как для уступки прав владения используется функция LeaveCriticalSection. Всегда следите за своевременной переуступкой прав владения объектами CS; несоблюдение этого правила может привести к тому, что другие потоки будут пребывать в состоянии ожидания в течение неопределенного времени даже после завершения выполнения потока-владельца.
Мы часто будем говорить о блокировании и разблокировании объектов CS, а вхождение в CS будет означать то же, что и блокирование CS.
Поток, владеющий объектом CS, может повторно войти в этот же CS без его блокирования; это означает, что объекты CRITICAL_SECTION являются рекурсивными (recursive). Поддерживается счетчик вхождений в объект CS, и поэтому поток должен покинуть данный CS столько раз, сколько было вхождений в него, чтобы разблокировать этот объект для других потоков. Эта возможность может оказаться полезной для реализации рекурсивных функций и обеспечения безопасного многопоточного выполнения функций общих (разделяемых) библиотек.
Выход из объекта CS, которым данный поток не владеет, может привести к непредсказуемым результатам, включая блокирование самого потока.
Для возврата из функции EnterCriticalSection не существует конечного интервала ожидания; другие потоки будут блокированы на неопределенное время, пока поток, владеющий объектом CS, не покинет его. Однако, используя функцию TryEnterCriticalSection, можно тестировать (опросить) CS, чтобы проверить, не владеет ли им другой поток.
Возврат
Объекты CRITICAL_SECTION обладают тем преимуществом, что они не являются объектами ядра и поддерживаются в пользовательском пространстве. Обычно, но не всегда, это приводит к дополнительному улучшению показателей производительности. К обсуждению аспектов производительности мы вернемся после того, как ознакомимся с объектами синхронизации, относящимися к ядру.
Настройка спин-счетчика
Обычно, если в результате выполнения функции EnterCriticalSection поток обнаруживает, что объект CS уже принадлежит другому потоку, он входит в ядро и остается блокированным до тех пор, пока не освободится объект CRITICAL_SECTION, что требует определенного времени. Однако в SMP-системах вы можете потребовать, чтобы поток повторил попытку завладеть объектом CS, прежде чем блокироваться, поскольку существует вероятность того, что поток, владеющий CS, выполняется на другом процессоре и в любой момент может освободить CS. Это может оказаться полезным для повышения производительности, если между потоками наблюдается высокая состязательность за право владения единственным объектом CRITICAL_SECTION. Влияние упомянутых факторов на производительность обсуждается далее в этой и последующих главах.
Для настройки счетчика занятости, или спин-счетчика (spin-count), предназначены две функции, одна из которых, SetCriticalSectionSpinCount, обеспечивает динамическую настройку счетчика, а вторая, InitializeCritical-SectionAndSpinCount, выступает в качестве замены функции Initialize-CriticalSection. Настройка спин-счетчика рассматривается в главе 9.
Использование объектов CRITICAL_SECTION для защиты разделяемыхпеременных
Использование объектов CRITICAL_SECTION не вызывает сложностей, и одним из наиболее распространенных способов их применения является обеспечение доступа потоков к разделяемым глобальным переменным. Рассмотрим, например, многопоточный сервер (аналогичный представленному на рис. 7.1), в котором необходимо вести учет следующих статистических данных:
• Общее количество полученных запросов.
• Общее количество отправленных ответов.
• Количество запросов, обрабатываемых в настоящее время всеми потоками сервера.
Поскольку переменные счетчиков являются глобальными переменными процесса, нельзя допустить того, чтобы одновременно два потока изменяли их значения. Один из методов обеспечения этого, базирующийся на применении объектов CRITICAL_SECTION, иллюстрирует схема, показанная ниже на рис. 8.2. Использование объектов CRITICAL_SECTION демонстрируется на примере программы 8.1, представляющей намного более простую систему, чем серверная.
Объекты CS могут привлекаться для решения задач, аналогичных той, которую иллюстрирует рис. 8.1, где два потока увеличивают значение одной и той же переменной. Приведенный ниже фрагмент кода обеспечивает нечто большее, нежели простое увеличение переменной, поскольку для этого достаточно было бы воспользоваться функциями взаимоблокировки. Обратите внимание на спецификатор volatile, предотвращающий размещение текущего значения переменной оптимизирующим компилятором в регистре, а не в ячейке памяти, отведенной для хранения переменной. Кроме того, в этом примере используется промежуточная переменная; этот необязательный элемент снижает эффективность программы, однако позволяет более отчетливо продемонстрировать, каким образом решается задача, иллюстрируемая рис. 8.1.
Неудержимый. Книга VIII
8. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
Законы Рода. Том 6
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
рейтинг книги
Восход. Солнцев. Книга I
1. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
Попаданка
Любовные романы:
любовно-фантастические романы
рейтинг книги
Возлюби болезнь свою
Научно-образовательная:
психология
рейтинг книги
