Слова и числа
Шрифт:
20 согласных букв: б, в, г, д, ж, з, к, л, м, н, п, р, с, т, ф, х, ц, ч, ш, щ, и остаются ещё три сиротинушки.
й – одиннадцатая буква русского алфавита, называется и краткое, обозначает полугласный звук. Звук й не образует слога и тем сходен с согласным.
Буквы ъ и ь не обозначают никаких звуков.
ъ – двадцать восьмая буква русского алфавита, называется твердый знак. В современной орфографии употребляется лишь как разделительный знак (например: разъезд, объявление).
ь – тридцатая буква русского алфавита, называется мягкий знак. Её употребление в современной орфографии гораздо шире:
– для обозначения мягкости предшествующего согласного;
– как разделительный знак перед я, ю, е, ё;
– в окончании именительного и винительного падежей единственного
– в повелительной форме глагола, оканчивающегося на ч, ш, ж;
– в неопределенной форме глагола;
– во 2-ом лице единственного числа настоящего и будущего простого времени.
Согласные в свою очередь делятся на 10 звонких и 10 глухих. Кроме того, 4 согласные буквы называются шипящими, причем одна из них (ж) находится в звонких, а три (ч, ш, щ) в глухих согласных. Это неизменные атрибуты букв. Но есть еще деление букв, которое не является постоянным, а изменяется в зависимости от слов, в которых они употребляются.
Гласные буквы делятся на ударные и безударные. Если в слове больше одного слога, то слоги произносятся с разной силой. Один из них выделяется голосом, он называется ударным. Гласная буква в слове, на которую приходится ударение, называется ударной; все остальные гласные в слове называются безударными.
Большинство согласных в слове бывают твердыми или мягкими. На письме мягкость предшествующего согласного обозначается буквами е, ё, и, ь, ю, я. Причем согласные ж, ц, ш в русском языке произносятся всегда твердо, а согласные ч, щ – только мягко.
Все буквы могут быть написаны большими (прописными) или маленькими (строчными). Большая буква начинает предложение, с большой буквы пишутся имена собственные, различные названия.
Система письма, основанная на подобном алфавите, называется консонантно-вокалической, то есть согласно-гласной.
Со стороны наш алфавит кажется четкой устоявшейся системой, и только присмотревшись, понимаешь, не все пока бесспорно. В среде филологов нет единого мнения по поводу буквы ё: одни её считают полноправным членом алфавита, другие – нет. Что греха таить, при наборе текста на клавиатуре мы редко употребляем эту букву, заменяя её буквой е. Даже клавиша с этой буквой спряталась в левом верхнем углу клавиатуры, и нажимаем мы её реже других, только когда особо держим в голове, что нужно набрать именно эту букву. В результате приходится сталкиваться с поразительными фактами. В солидном словаре:
Словарь русского языка: В 4-х т.
АН СССР, Ин-т рус. яз.;
под. ред. А П. Евгеньевой
М.: Русский язык, 1985-1988,
приведен полный алфавит в начале каждого тома. В самом же словаре про букву е сказано, что она шестая, про букву и сказано, что она девятая, буква у – двадцатая, э – тридцать первая, я – тридцать третья. Посмотрите на алфавит и посчитайте. Получается, что буква ё – никакая. Всех сосчитали, а её – нет. Как это может быть – непонятно. Уже этот факт говорит о том, что и словесникам неплохо бы знать математику. Поэтому, отбросив споры языковедов, возьмем за аксиому (как говорят математики), что в русском алфавите 33 равноправных буквы. Еще одно замечание касается названия буквы э. Иногда её называется просто э, а иногда э оборотное. Будем проще, то есть называть эту букву э.
В некоторых книгах приводится алфавит, в котором три буквы ъ, ы, ь написаны только маленькими и для них нет написания большой буквы [19]. Тем самым, наверное, хотят подчеркнуть, что эти буквы не могут стоять в начале слова. В «Этимологическом словаре русского языка» М. Фасмера особо указано, что буква ы никогда не может начинать слово. Действительно, твердый знак и мягкий знак не могут стоять в начале слова. Правда, при перечислении
Теория множеств и алфавиты
Школьным учителям-предметникам, нужно постоянно помнить о межпредметных связях и на своих уроках стараться показать единство человеческих знаний, а не их разобщенность по отдельным наукам. Например, изучение основ математической теории множеств можно успешно проводить, иллюстрируя введение новых понятий примерами из русского алфавита.
Множество – одно из основных, фундаментальных понятий математики, которое нельзя определить через другие понятия, поэтому его можно только более или менее доходчиво описать. Множество – это любое собрание определенных и различимых между собой объектов мыслимое как единое целое. Эти объекты называются элементами или членами множества. Существенно для понимания, что здесь собрание предметов само рассматривается как один объект. Множество деревьев – это сад или лес, множество учащихся – класс или школа, множество работников предприятия – коллектив, множество птиц – стая. Для обозначения множеств обычно используют большие латинские буквы. Множество может быть конечным, когда конечно число входящих в него элементов. Например, множество букв русского алфавита конечно и состоит из 33 элементов. С другой стороны, множество всевозможных упорядоченных наборов букв бесконечно, если не накладывать ограничений на длину этих наборов.
Конечное множество можно задать простым перечислением его элементов. Для этого принята следующая форма записи: R={а, б, в, г, д, е, ё, ж, з, и, й, к, л, м, н, о, п, р, с, т, у, ф, х, ц, ч, ш, щ, ъ, ы, ь, э, ю, я}.
Так мы задали множество букв русского алфавита. Определим подобным образом еще несколько конечных множеств, состоящих из тех же букв и собранных по некоторым индивидуальным для каждого множества признакам:
G={а, е, ё, и, о, у, ы, э, ю, я},
S={б, в, г, д, ж, з, к, л, м, н, п, р, с, т, ф, х, ц, ч, ш, щ},
P={й},
Z={ъ, ь},
D={б, в, г, д, ж, з, л, м, н, р},
T={к, п, с, т, ф, х, ц, ч, ш, щ},
X={ж, ш, ч, щ}.
Другой способ задания множества – описательный. Нужно сформулировать предложение, которое описывает данное множество так, что его нельзя спутать ни с каким другим и о любом объекте можно точно сказать принадлежит ли он этому множеству или нет. Тогда перечисленные выше множества букв будут определяться так:
Как я строил магическую империю 3
3. Как я строил магическую империю
Фантастика:
попаданцы
постапокалипсис
аниме
фэнтези
рейтинг книги
Ритуал для призыва профессора
Любовные романы:
любовно-фантастические романы
рейтинг книги
Невеста снежного демона
Зимний бал в академии
Фантастика:
фэнтези
рейтинг книги
Прорвемся, опера! Книга 3
3. Опер
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Леди Малиновой пустоши
Любовные романы:
любовно-фантастические романы
рейтинг книги
Мымра!
1. Мымрики
Любовные романы:
современные любовные романы
рейтинг книги
Матабар
1. Матабар
Фантастика:
фэнтези
рейтинг книги
Офицер Красной Армии
2. Командир Красной Армии
Фантастика:
попаданцы
рейтинг книги
