Смерть в черной дыре и другие мелкие космические неприятности
Шрифт:
Передний фронт открытий почти во всех областях научных исследований, а особенно в физике, лежит в царстве эксперимента. При предельных состояниях вещества, например в окрестностях черной дыры, обнаруживаешь, что гравитация жестоко скручивает близлежащий пространственно-временной континуум. При предельно высоких энергиях поддерживается термоядерный синтез в недрах звезд, когда температура составляет десять миллионов градусов. И при любых мыслимых предельных состояниях обязательно получаешь те самые условия чудовищного жара и чудовищной плотности, которые преобладали во Вселенной в первые мгновения ее существования.
Мы рады сообщить, что никаких предельных физических состояний в повседневной жизни не наблюдается. Обычно по утрам,
Если бы подобные сцены разыгрывались изо дня в день, современная физика не казалась бы такой диковинной, познания о ее основах естественным образом вытекали бы из нашего жизненного опыта, а наши родные и близкие ни за что не выпускали бы нас из дома на работу. А когда-то, в первые мгновения существования Вселенной, такое происходило сплошь и рядом. Чтобы представить себе и понять, как это было, есть лишь один способ – завести себе здравый смысл иного порядка, выработать иное интуитивное понимание того, как должны действовать законы физики при экстремальных температурах, плотностях и давлении.
Добро пожаловать в мир E = mc^2.
Версию своей знаменитой формулы Эйнштейн опубликовал в 1905 году в своей эпохальной статье под названием «К электродинамике движущихся тел». Понятия, выдвинутые в этой статье, известны как специальная теория относительности, и они навсегда изменили наши представления о пространстве и времени. Эйнштейну было тогда всего 26 лет. Подробнее он рассказал о своем аккуратненьком уравнении в отдельной и, что примечательно, совсем короткой заметке, которая вышла в свет в том же году – «Зависит ли инерция тела от содержащейся в нем энергии?» Чтобы избавить вас от штудирования этой статьи, организации эксперимента и проверки теории, поясню, что ответ – «Да».
Как писал Эйнштейн:
Если тело отдает энергию L в виде излучения, то его масса уменьшается на L/V^2 (Здесь L – энергия, V – скорость излучения, то есть, скорость света, поэтому это выражение соответствует более привычной записи E/c^2. – Прим. перев.) … Масса тела есть мера содержащейся в нем энергии; если энергия изменяется на величину L, то масса меняется соответственно…
Эйнштейн не был вполне уверен, что это утверждение истинно, и затем предположил:
Не исключена возможность того, что теорию удастся проверить для веществ, энергия которых меняется в большей степени (например, для солей радия).
Итак, перед вами алгебраический рецепт на все случаи жизни, когда вам захочется преобразовать вещество в энергию или энергию в вещество. Этими простыми словами Эйнштейн невольно подарил астрофизикам вычислительный инструмент E = mc^2, который позволяет
Самая известная форма энергии – это фотон, неделимая частица света, лишенная массы. В фотонах мы просто-таки купаемся – к нам долетают фотоны и с Солнца, Луны и звезд, и от газовой плиты, торшера и ночника. Почему же мы не сталкиваемся с E = mc^2 ежедневно, на личном опыте? Энергия фотонов видимого света несравнимо меньше, чем энергия субатомных частиц с самой маленькой массой. Фотон не может ни во что превратиться, поэтому жизнь его течет счастливо, почти без потрясений.
Хотите приключений? Заведите себе компанию фотонов из гамма-лучей, у которых энергия уже нешуточная, по крайней мере в 200 000 раз больше, чем у видимых фотонов. Правда, вы довольно скоро заболеете раком и умрете, зато успеете увидеть, как везде, где пробегали эти фотоны, возникают пары электронов и позитронов – частица со своей античастицей, одна из множества сладких парочек в субатомном мире. На ваших глазах эти электроны из царства вещества и антивещества будут сталкиваться, аннигилировать и снова создавать гамма-фотоны. Увеличьте энергию света еще в 2000 раз, и вот уже получились гамма-лучи, энергии которых хватит, чтобы превратить впечатлительного человека в Халка. Однако теперь у пар этих фотонов хватает энергии и на то, чтобы спонтанно создавать более массивные нейтроны, протоны и их античастицы.
Высокоэнергичные фотоны где попало не слоняются. Однако места их обитания лежат вовсе не в воображаемом мире. Гамма-лучам подходит любая обстановка, лишь бы температура там была выше нескольких миллиардов градусов.
То, что частицы и их энергетические запасы превращаются друг в друга, играет в космологии определяющую роль. В настоящее время температура расширяющейся Вселенной, вычисленная по наблюдениям микроволнового излучения, заполняющего все космическое пространство, составляет всего 2,73 градуса по Кельвину. Микроволновые фотоны, как и фотоны видимого света, недостаточно горячи и поэтому не могут претендовать на то, чтобы превратиться в частицу по закону E = mc^2; строго говоря, мы еще не знаем ни одной частицы, в которую они способны спонтанно превратиться. Однако еще вчера Вселенная была чуть меньше и чуть теплее. А позавчера – еще меньше и еще теплее. Прокрутите стрелки часов еще немного назад, скажем, на 13,7 миллиарда лет, и попадете прямиком в первобытный бульон Большого Взрыва, во времена, когда фоновая температура космоса была так высока, что представляла интерес для астрофизики.
То, как вели себя пространство, время, вещество и энергия по мере расширения и остывания Вселенной с самого ее начала – величайший эпос на свете. Однако, чтобы объяснить, что же происходило в этом космическом горниле, надо найти способ соединить четыре фундаментальные силы Вселенной в одну, а также способ примирить друг с другом две несовместимые области физики – квантовую механику (науку о малом) и общую теорию относительности (науку о большом).
Воодушевленные счастливым союзом квантовой механики и электромагнетизма, заключенным в середине XX века, физики наперегонки стремились наладить отношения между квантовой механикой и общей теорией относительности – создать теорию квантовой гравитации. До финишной прямой мы пока не добрались, зато точно знаем, где стоят барьеры: они находятся на границе «Планковской эпохи». Это фаза развития Вселенной с момента рождения до возраста 1043 секунд и до того, как Вселенная достигла размера 1035 метров в поперечнике. Немецкий физик Макс Планк, в честь которого и названы эти невообразимо малые величины, для которых даже нет подходящих числительных, в 1900 году ввел понятие кванта энергии и в целом считается отцом квантовой механики.