Сочинения в двух томах. Том 1
Шрифт:
Из этого явствует, что в одном и том же предмете может быть бесконечное множество различных измерений и что они совершенно ничего не добавляют к измеряемым вещам, но понимаются одинаковым образом, независимо от того, имеют ли они реальное основание в самих предметах или были придуманы по произволу нашего ума. Действительно, чем-то реальным является тяжесть тела, или скорость движения, или разделение века на годы и дни, но не таково разделение дня на часы и мгновения и т. д. Тем не менее все это признается одинаковым, если рассматривается только в отношении измерения, как это следует делать здесь и в математических дисциплинах, ибо исследование того, является ли основание упомянутых измерений реальным, больше касается физиков.
Рассмотрение этого обстоятельства проливает много света на геометрию, так как почти все плохо представляют в ней три вида величины: линию, поверхность и тело. В самом деле, как было отмечено ранее, линия и поверхность непредставимы как действительно отличные от тела или друг от друга, но, когда они рассматриваются просто как отвлеченные разумом, тогда они суть различные виды величины не в большей
Единица есть та общая природа, к которой, как мы сказали выше, должны быть одинаково приобщены все те вещи, какие сравниваются между собой. И если в вопросе нет какой-либо уже определенной единицы, мы можем взять вместо нее или одну из уже данных величин, или любую другую, которая и будет общей мерой для всех остальных; и мы поймем, что в ней заключено столько же измерений, сколько и в тех крайних членах, которые должны будут сравниваться между собой, и представим ее себе либо просто как нечто протяженное, отвлекаясь от всего иного (тогда она будет тем же самым, что и точка у геометров, когда они посредством ее движения образуют линию), либо как некоторую линию, либо как квадрат.
Что касается фигур, то выше уже было показано, как посредством их одних могут быть образованы идеи всех вещей; в данном случае нам остается уведомить, что из бесчисленного количества их различных видов мы будем использовать здесь только те, которыми наиболее легко выражаются все различия отношений или пропорций. Существует же только два рода вещей, которые сравниваются между собой: множества и величины; и для того, чтобы сделать их доступными нашему представлению, мы располагаем также и двумя родами фигур. Например, точки, которыми обозначается треугольное число, или древо, которое раскрывает чью-нибудь родословную, и т. д. являются фигурами, представляющими множество; те же фигуры, которые непрерывны и неделимы, такие, как треугольник, квадрат и т. д., представляют величины.
Для того же, чтобы теперь изложить, какими из всех этих фигур мы будем здесь пользоваться, необходимо знать, что все отношения, какие только могут быть между сущностями одного и того же рода, должны быть сведены к двум главным, а именно к порядку или к мере.
Кроме того, надо знать, что для нахождения порядка требуется немало усердия, как это везде можно видеть в настоящем методе, который не научает почти ничему другому; в познании же порядка, после того как он был найден, не заключается совершенно никакой трудности, но мы можем легко обозреть умом, в соответствии с седьмым правилом, каждую из упорядоченных частей, именно потому что в этом роде отношений одни части соотносятся с другими сами по себе, а не через посредство чего-то третьего, как это бывает с мерами, о развертывании которых мы здесь поэтому только и будем рассуждать. Действительно, я узнаю, каков порядок, связывающий А и В, не рассматривая ничего иного, кроме обоих крайних членов; но я не узнаю, каково соотношение по величине между двумя и тремя, если не рассмотрю нечто третье, а именно единицу, которая является общей мерой обоих чисел.
Надо также знать, что непрерывные величины с помощью принятой единицы иногда целиком могут быть сведены к множеству и всегда — по крайней мере частично, а множество единиц может быть затем расположено в таком порядке, что затруднение, которое касается познания меры, будет в конце концов зависеть лишь от рассмотрения порядка, и успеху этого искусство содействует в наибольшей степени.
Надо, наконец, знать, что из измерений непрерывной величины нет ни одного, которое представлялось бы более отчетливо, чем длина и ширина, и что не следует одновременно обращать внимание на большее число измерений в одной и той же фигуре, если мы будем сравнивать друг с другом два различных измерения, ибо требуется искусство для того, чтобы, располагая больше чем двумя различными измерениями, подлежащими сравнению друг с другом, мы последовательно обозревали их, но одновременно обращали внимание только на два из них.
Заметив это, легко заключить, что положения здесь должны быть отвлечены от тех самых фигур, о которых рассуждают геометры, когда вопрос стоит о них, — отвлечены не менее, чем от любой другой материи. Для этой цели не следует оставлять ничего, кроме прямолинейных и прямоугольных поверхностей
Правило XV
В большинстве случаев полезно также чертить эти фигуры и представлять их внешним чувствам для того, чтобы таким способом легче удерживать нашу мысль сосредоточенной.
А то, как следует изображать эти фигуры, чтобы, когда они находятся перед глазами, их образы отчетливее запечатлевались в нашем воображении, является самоочевидным: так, вначале мы изобразим единицу тремя способами, а именно: в виде квадрата
Правило XVI
Что же касается вещей, которые не требуют наличного внимания ума, хотя и необходимы для заключения, то их лучше обозначать посредством наиболее сокращенных знаков, чем посредством полных фигур, ибо тогда память не сможет ошибаться, а вместе с тем и мысль не будет отвлекаться на то, чтобы удержать их, в то время как она занята выведением других.
Впрочем, поскольку мы сказали, что из бесчисленных измерений, которые могут быть изображены в нашей фантазии, нужно созерцать одним взором глаз или ума не более двух различных измерений, то важно удерживать в памяти все остальные таким образом, чтобы они легко представлялись всякий раз, когда потребует необходимость; по-видимому, с этой целью память и была создана природой. Но так как память зачастую подвержена ошибкам, то для того, чтобы мы не были вынуждены уделять некоторую часть нашего внимания ее восстановлению, в то время когда мы заняты другими мыслями, искусство весьма кстати открыло возможность применения письменности. Полагаясь на ее помощь, мы здесь совершенно ничего не вверяем памяти, но, предоставив свободной фантазии в целом наличные идеи, изображаем на бумаге все, что должно быть сохранено, и делаем это посредством наиболее сокращенных знаков, чтобы, после того как в соответствии с девятым правилом мы рассмотрели каждый из них в отдельности, мы смогли в соответствии с одиннадцатым правилом обозреть их все в наибыстрейшем движении мысли и одновременно охватить взором наибольшее их число.
Итак, все, что для разрешения затруднения надлежит рассматривать как нечто единое, мы будем обозначать одним знаком, который может быть изображен как угодно. Но ради удобства мы воспользуемся буквами а, b, с и т. д. для выражения уже известных величин и А, В, С и т. д. для выражения неизвестных. Мы часто будем ставить перед ними цифры 2, 3, 4, и т. д. для того, чтобы обозначить количество этих величин; вместе с тем мы будем располагать цифры и позади них, для того чтобы обозначать число отношений, которые надлежит в них уразуметь: так, если я напишу 2а3, это будет то же самое, как если бы я сказал: удвоение величины, обозначаемой буквой а и содержащей три отношения. И благодаря этому приему мы не только произведем сокращение многих выражений, но и, что особенно важно, представим термины затруднения в столь чистом и подлинном виде, что, не упуская ничего полезного, мы вместе с тем никогда не найдем в них ничего излишнего и того, что напрасно отвлечет способности ума, в то время как нужно будет одновременно охватить умом многие вещи.