Чтение онлайн

на главную - закладки

Жанры

Шрифт:

8.22. Разве необходимо иметь дело со скоростями зарождающихся или исчезающих величин, или моментами, или бесконечно малыми величинами? и разве введение таких непостижимых категорий не является упреком математикам?

8.23. Разве внутренне противоречивые положения (inconsistencies) могут быть истинами? Разве можно в каком-либо предмете и какой-либо науке допускать положения противоречивые (repugnant) и абсурдные? и разве применение бесконечно малых величин следует признавать за достаточно благовидный предлог и основание для допущения таких положений в геометрии?

8.24.

Разве мы не можем сказать, что мы действительно знаем какую-либо величину, когда нам известно ее пропорциональное отношение к данным величинам? и разве можно узнать это отношение при помощи каких-либо иных средств, кроме выражений или показателей, геометрических, алгебраических или арифметических? и разве выражения в линиях или образах (species) могут быть полезны иначе как лишь в той мере, в какой они сводятся к числам?

402

8.25. Разве нахождение истинных выражений или обозначений количеств не является самой общей чертой и стремлением математиков, а арифметическое действие — тем, что ограничивает и определяет их применение?

8.26. Разве математики в достаточной мере рассматривали аналогию и применение знаков? и насколько им соответствует конкретный ограниченный характер вещей?

8.27. Разве в силу того что при изложении общего чисто алгебраического примера мы можем в зависимости только от нашего собственного желания приписать какой-либо букве, что она будет обозначать положительную или отрицательную величину, мы можем затем в геометрическом примере, ограниченном гипотезами и рассуждениями, основанными на конкретных свойствах и отношениях фигур, претендовать на такую же вольность?

8.28. Разве изменение предположения или, как мы можем назвать это, fallacia suppositionis [20], не является софистикой, которой в значительной мере заражены обоснования современных теорий как в механической философии, так и в запутанной и сложной геометрии?

8.29. Разве мы в состоянии получить идею или понятие скорости отдельно (distinct) от ее измерений и отдельно от них, как мы можем получить понятие о теплоте отдельно от градусов на термометре, которыми она измеряется, и обособленно от них? и разве не это допускается в рассуждениях современных аналитиков?

8.30. Разве можно постичь движение в точке пространства? и если нельзя постичь движение, разве можно постичь скорость? и если нет, разве можно постичь первую или последнюю скорость в простом пределе, первоначальном или конечном, дескриптивного пространства? \

8.31. Разве там, где нет приращений, может быть какое-либо соотношение приращений? Разве можно считать нули пропорциональными реальным величинам? Или: говорить об их пропорциях — разве не значит нести чепуху? Л также в каком смысле должны мы понимать отношение поверхности к линии, площади к ординате? и разве можно говорить, что образы или числа, действительно выражающие величины, не являющиеся однородными, тем не менее выражают свое отношение друг к другу?

403

8.32. Если возможна квадратура всех определяемых окружностей, разве круг в сущности не так же сводится к квадрату, как парабола? Или разве в действительности

площадь, ограниченная параболой, может быть измерена более точно, чем круг?

8.33. Разве не было бы более правильным применять [в вычислениях] разумное приближение, чем пытаться добиться точности при помощи софистики?

8.34. Разве не более приличествовало бы действовать путем проб и индукций, чем притворяться, будто имеется доказательство, хотя оно основано на ложных принципах?

8.35. Разве нет способа дойти до истины, хотя принципы не научны, а ход рассуждений не верен? и разве такой способ следует называть наукой, а не уловкой (knack)?

8.36. Разве может быть наука о выводах, если нет науки о принципах? и разве может человек иметь научные принципы, не понимая их? И, следовательно, разве математики нашего времени поступают как люди науки, прилагая намного больше усилий для применения своих принципов, чем для их понимания?

8.37. Разве величайший гений, сражающийся с ложными принципами, не может быть поставлен в тупик? и разве можно получить точные квадратуры без новых postulate или допущений? и если нет, разве не следует те допущения, которые являются разумными и последовательными, предпочесть противоположным? См. § 28 и 29.

8.38. Разве утомительные расчеты в алгебре и флюксии являются наиболее подходящим способом для совершенствования ума? и разве тот факт, что люди привыкли рассуждать целиком и полностью о математических внаках и фигурах, не ставит их в тупик относительно того, как рассуждать без этих знаков и фигур?

8.39. Какую бы сноровку ни приобрели аналитики в постановке задач или нахождении соответствующих выражений для математических величин, разве она необходимо влечет за собой соответствующую ей способность постигать другие вопросы и выражать их суть дела?

404

8.40. Разве не является общим положением или правилом, что один и тот же коэффициент, делящий равные произведения, дает равные частные? и тем не менее разве может быть такой коэффициент выражен через 0, т. е. нулем? Или разве может кто-нибудь сказать, что если уравнение 2x0=5x0 разделить на 0, то частные в обеих частях будут равны? В силу этого разве не может дело обстоять так, что какое-либо правило будет справедливо в отношении всех величин и тем не менее не будет распространяться на нуль или включать нуль? и разве подведение нуля под понятие «величина» не привело людей к ложным рассуждениям?

8.41. Разве в самых общих рассуждениях о равенствах и пропорциях нельзя доказывать так же точно, как в геометрии? Разве в таких доказательствах люди не обязаны придерживаться того же строгого хода рассуждения, как в геометрии? и разве такие их рассуждения не выводятся из тех же самых аксиом, которые приняты в геометрии? В силу этого разве алгебра не является такой же истинной наукой, как и геометрия?

8.42. Разве люди не могут рассуждать при помощи образов (species) так же, как при помощи слов? Разве в обоих случаях не действуют те же самые правила логики? и разве у нас нет права ожидать и требовать одинакового доказательства в обоих случаях?

Поделиться:
Популярные книги

Идеальный мир для Лекаря 4

Сапфир Олег
4. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 4

Последняя Арена 10

Греков Сергей
10. Последняя Арена
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 10

Мой личный враг

Устинова Татьяна Витальевна
Детективы:
прочие детективы
9.07
рейтинг книги
Мой личный враг

Ведьмак (большой сборник)

Сапковский Анджей
Ведьмак
Фантастика:
фэнтези
9.29
рейтинг книги
Ведьмак (большой сборник)

Имперский Курьер

Бо Вова
1. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Имперский Курьер

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Аргумент барона Бронина 4

Ковальчук Олег Валентинович
4. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Аргумент барона Бронина 4

Сумеречный Стрелок 5

Карелин Сергей Витальевич
5. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 5

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4

Игра на чужом поле

Иванов Дмитрий
14. Девяностые
Фантастика:
попаданцы
альтернативная история
5.50
рейтинг книги
Игра на чужом поле

Мужчина не моей мечты

Ардова Алиса
1. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.30
рейтинг книги
Мужчина не моей мечты

Метатель

Тарасов Ник
1. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель

Шаг в бездну

Муравьёв Константин Николаевич
3. Перешагнуть пропасть
Фантастика:
фэнтези
космическая фантастика
7.89
рейтинг книги
Шаг в бездну

Род Корневых будет жить!

Кун Антон
1. Тайны рода
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Род Корневых будет жить!