Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Дело мне представляется следующим образом.

В 1876 г. Вейерштрасс напечатал свои исследования (здесь [199].—Я. К.) по изображению целых и мероморфных функций; эти исследования настолько привлекли внимание ученых, что в 1879 г. Пикар перевел эти исследования на французский язык (здесь [200].—Я. К.).

Очевидно, всякая задача (механическая пли иная), которая приводила бы к уравнениям, интегрируемым в целых функциях времени, могла считаться разрешенною до конца, так как тейлоровское разложение интеграла давало бы его значение для любого

6 Ознакомившись с перепиской С. В. Ковалевской, В. В. Голубев

поместил некоторые из ее писем в своей книге [165].

191

момента. Но по теореме Вейерштрасса мероморфные функции представляют отношение целых; следовательно, с некоторыми дополнительными осложнениями то же заключение приложимо и к уравнениям, имеющим мероморфные интегралы. Их также можно было считать до конца решенными при помощи разложений в ряды тех целых функций, отношения которых представляют искомые мероморфные интегралы. При этом совершенно не важно, выражаются ли эти целые функции через изученные или нет.

Но эту идею можно было применить только к функциям меро- морфным; в случае, еслн интегралы имеют подвижные существенно особые точки, их, очевидно, нельзя свести к отношению целых функций; С. В. Ковалевская ими не занималась.

Итак, С. В. Ковалевская искала те случаи, когда уравнения движения могут быть сведены к задаче о нахождении из уравнений целых функций; для этого, вообще говоря, теория последнего множителя не нужна. Наличие его позволило С. В. Ковалевской упростить дальнейшие вычисления и свести дело к известным функциям, по, говоря теоретически, можно было бы обойтись и без него. В своих лекциях по движению твердого тела (гл. II и гл. VI) я пытался развить эти идеи подробнее»...7

В конце письма В. В. Голубев говорит, что рассматривает работу С. В. Ковалевской как «замечательное приложение общих идей аналитической теории дифференциальных уравнений к задачам механики».

Исследования С. В. Ковалевской внесли ряд новых блестящих страниц в историю задачи о вращении твердого тела. Во-первых, С. В. Ковалевской был открыт новый случай интегрируемости, для которого она нашла четвертый интеграл (в дополнение к трем1 известным) и дала общее решение. Во-вторых, в связи с полученными С. В. Ковалевской результатами оказались поставленными две математические задачи: о существовании однозначных решений задачи о вращении тяжелого твердого тела вокруг неподвижной точки и задача о существовании четвертого алгебраического интеграла. В-третьих, работа С. В. Ковалевской дала толчок к огромному ряду исследований, относящихся к отысканию частных решений общей задачи, а также к ряду исследований частных решений случая Ковалевской.

Вопрос об однозначных решениях при произвольных пачальпых данных был, как мы указали, полностью решен А. М. Ляпуновым.

Усилиями многих ученых была доказана теорема: если эллипсоид инерции есть эллипсоид вращения, то четвертый

7 Это письмо В. В. Голубев направил мне 15 декабря 1953 г.

192

алгебраический интеграл существует только в случаях Эй- лера, Лагранжа и Ковалевской. Таким образом, четвертый алгебраический интеграл задачи о вращении тяжелого твердого тела, имеющего неподвижную точку, существует в тех и только тех случаях, в которых имеются однозначные на всей плоскости t общие решения для р, g, г, Ъ

К'. Г-

Возник вопрос, является ли это обстоятельство случаи- ным совпадением или же в его основе лежат какие-то глубокие причины. В. В. Козлов показал [201], пользуясь методом малого параметра: именно существование бесконечного числа неоднозначных решений препятствует появлению нового однозначного аналитического интеграла в общем случае.

Ряд ученых упрощали и шлифовали доказательства указанных теорем, которые можно назвать «теоремами несуществования», и теперь эта область может считаться закрытой.

Дальнейшие исследования сначала пошли по линии отыскания частных решений, т. е. решений, содержащих менее пяти произвольных постоянных, или, иначе, когда начальные значения искомых функций не остаются произвольными, но между ними существуют некоторые соотношения. Ряд русских ученых включились в эти исследования. Были получены интересные результаты: В. А. Стеклов [202], Д. Н. Бобылев [203], С. А. Чаплыгин [204] идр. За границей случай интегрируемости такого рода был найден В. Гессом [205]. И до настоящего времени делаются попытки отыскания интегрируемых частных случаев; иногда потом выясняется (например, у П. Шиффа, К. Агости- нелли и др.), что «решение» неверно, т. е. не удовлетворяет дифференциальным уравнениям задачи [206].

После 1910 г. существенных результатов получено не было, пока в 1947 г. не появилось решение итальянца Д. Гриоли [189]. Нужны были какие-то новые возможности обнаружения случаев интегрируемости. Эти возможности появились благодаря исследованиям П. В. Харламова [209], приведшего систему шести уравнений задачи о вращении к системе двух уравнений, и Е. И. Харламовой, которая свела задачу к одному интегро-дифференциально- му уравнению. В 1959 г. Е. И. Харламова нашла свой новый случай интегрируемости [207].

А. Пуанкаре ввел понятие инвариантного соотношения для системы уравнений (иногда говорят: частного интег рала)

На основе этого определения П. В. Харламов предложил обобщенное понятие инвариантных соотношений, содержащих ряд параметров, и разработал метод построения точных решений с инвариантными соотношениями. При этом рассматривается некоторое обобщение задачи: вместо гироскопа, в котором действует только сила тяжести, можно взять гиростат, в котором имеются силы, дающие дополнительные линейные члены в уравнениях движения.

Инвариантные соотношения (некоторые из них представляют комбинации первых интегралов) берутся в виде полиномов первой, второй и более высокой степени относительно искомых функций. Таким образом классифицируются все полученные общие и частные решения. В книге Г. В. Горр и др. [206] приведена таблица всех этих решений, число которых оказалось равным двадцати. Среди них решение Ковалевской занимает одно из самых видных мест.

Случай Ковалевской имеет гораздо более сложное решение, чем два других случая общих решений и чем последующие случаи. Поэтому исследователи стали лучше представлять себе трудности общей задачи. Эта сложность в особенности побуждала развить геометрическую интерпретацию случая Ковалевской. Однако это было трудной задачей.

Поделиться:
Популярные книги

Измена. Испорченная свадьба

Данич Дина
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Измена. Испорченная свадьба

Последний из рода Демидовых

Ветров Борис
Фантастика:
детективная фантастика
попаданцы
аниме
5.00
рейтинг книги
Последний из рода Демидовых

Его наследник

Безрукова Елена
1. Наследники Сильных
Любовные романы:
современные любовные романы
эро литература
5.87
рейтинг книги
Его наследник

Измена. Право на семью

Арская Арина
Любовные романы:
современные любовные романы
5.20
рейтинг книги
Измена. Право на семью

Неудержимый. Книга XIX

Боярский Андрей
19. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIX

Волков. Гимназия №6

Пылаев Валерий
1. Волков
Фантастика:
попаданцы
альтернативная история
аниме
7.00
рейтинг книги
Волков. Гимназия №6

Неучтенный. Дилогия

Муравьёв Константин Николаевич
Неучтенный
Фантастика:
боевая фантастика
попаданцы
7.98
рейтинг книги
Неучтенный. Дилогия

Безумный Макс. Ротмистр Империи

Ланцов Михаил Алексеевич
2. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
4.67
рейтинг книги
Безумный Макс. Ротмистр Империи

Проданная Истинная. Месть по-драконьи

Белова Екатерина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Проданная Истинная. Месть по-драконьи

Род Корневых будет жить!

Кун Антон
1. Тайны рода
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Род Корневых будет жить!

Брак по-драконьи

Ардова Алиса
Фантастика:
фэнтези
8.60
рейтинг книги
Брак по-драконьи

Боги, пиво и дурак. Том 3

Горина Юлия Николаевна
3. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 3

Отморозок 3

Поповский Андрей Владимирович
3. Отморозок
Фантастика:
попаданцы
5.00
рейтинг книги
Отморозок 3

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3