Чтение онлайн

на главную - закладки

Жанры

Солнечная система (Астрономия и астрофизика)
Шрифт:

Магнитное поле Меркурия — это поставленный самой природой чистый эксперимент. Отсутствие атмосферы в сочетании с заметным собственным полем планеты позволяет исследовать явления обтекания магнитосферы солнечным ветром в условиях, которые не реализуются больше ни у одной планеты Солнечной системы.

Существование магнитного поля у Меркурия должно быть связано с жидким состоянием его ядра, на которое приходится около 60% массы планеты. Вместе с тем, расчеты показывают, что за время жизни планеты жидкое вначале ядро должно было затвердеть; а в твердом ядре магнитное поле возбудиться не может. Более того, на остывание ядра хватило бы и значительно меньшего времени: всего 1,5—2,0 млрд. лет. Чтобы решить проблему, предполагают, что в металлическом ядре много серы,

а у легированного серой железо-никелевого сплава значительно снижается температура затвердевания, и ядро может сохранить свое жидкое состояние. Тем не менее, многие противоречия остаются неразрешенными. В 1996 г. появилось сообщение о том, что магнитное поле аналогичного характера и интенсивности обнаружено у других медленно вращающихся небесных тел, более или менее близких к Меркурию по размерам и массе. Это спутники Юпитера Ганимед и, возможно, Европа.

О происхождении Меркурия

Желая понять природу планет, мы неизбежно возвращаемся к вопросу о формировании Солнечной системы. Процессы, происходившие 4,5 млрд. лет назад, к сожалению, известны недостаточно полно. Одна из проблем — источники тепла для образования жидкой лавы, заполнявшей ударные кратеры на Меркурии и Луне. Анализ лунных пород показывает, что возраст застывших на поверхности лав достигает 4 млрд. лет. Это говорит об очень высокой скорости, с которой такого рода планеты прошли гравитационную дифференциацию, разделившую легкие и плотные компоненты. На это ушло всего несколько сотен миллионов лет. Лавовые излияния происходили одновременно с формированием кратерированной поверхности планеты. Таким образом, в это время в недрах планеты уже имелись резервуары расплавленной лавы. Однако, хотя в гравитационной дифференциации и выделяется много энергии, для ее начала температура планеты уже должна быть достаточно высокой.

У планет группы Земли разогрев недр объясняется выделением тепла при распаде радиоактивных изотопов тория, урана, калия и других элементов. После завершения гравитационной дифференциации эти элементы оказались в основном сосредоточенными в мантии планеты, поэтому их современное содержание известно, а исходное количество вычисляется по известной скорости радиоактивного распада. Основанный на этом расчет показывает, что на предшествовавший гравитационной дифференциации разогрев Меркурия должно было уйти 1,0—1,5 млрд. лет, что противоречит возрасту лавы.

Еще одна гипотеза — попытка объяснить быстрый разогрев интенсивной метеоритной бомбардировкой — тоже опровергается расчетами. Излучаемый планетой в единицу времени поток тепла настолько велик, что метеоритная бомбардировка могла бы компенсировать его только в том случае, если бы планета формировалась за немногие тысячи, а не за 200 млн. лет. Но это представляется совершенно нереальным.

Количественные оценки показывают, что и в самом процессе формирования Меркурия из планетезималей много неясного. При их столкновении с поверхностью планеты происходит выброс вещества — продуктов взрыва. Обломки движутся по баллистическим траекториям и выпадают на поверхность планеты, образуя вторичные кратеры. Но если энергия первичного выброса очень велика, скорость обломков может превысить значение второй космической скорости. Тогда падение планетезималей может привести уже не к росту, а к уменьшению массы планеты. Недавно было показано, что при той скорости, которой обладали протопланетные тела вблизи орбиты Меркурия, энергия ударов была настолько велика, что выпадение метеоритного вещества должно было приводить не к росту, а к уносу продуктов выброса и к уменьшению массы образующейся планеты.

По-видимому, в период затухания метеоритной бомбардировки, как и на предыдущей стадии, продолжались местные излияния лавы, но общего плавления поверхности не происходило, хотя местные размягчения могли существовать. К этому периоду относится образование гигантской равнины Жары и других менее четко выраженных равнин.

Совсем другое происхождение, как предполагается, имеют эскарпы. Выделение

массивного металлического ядра в процессе гравитационной дифференциации должно было привести к сильному — на 700К — разогреву и плавлению недр планеты с уменьшением ее радиуса примерно на 17 км. По-видимому, эти события произошли в столь давнее время, что их следы на поверхности Меркурия не сохранились. Согласно расчетам, дальнейшее плавление мантии привело, к дополнительному уменьшению радиуса на 2 км. и соответствующему сжатию коры. Именно в этом процессе наползания друг на друга отдельных блоков коры и возникли эскарпы.

В заключение напомним одну любопытную гипотезу. Еще в XIX в. было высказано предположение, что Меркурий может быть потерянным спутником Венеры. В 1970-х годах была создана математическая модель эволюции орбиты такого гипотетического спутника с массой Меркурия. Результаты оказались следующими. Будучи спутником Венеры на орбите с большой полуосью около 400 тыс. км., Меркурий должен был вызвать огромное приливное рассеяние энергии, как в собственном теле, так и в теле Венеры (подробнее об этом рассказано в разделе, посвященном Венере). Это должно было вызвать плавление коры у обоих тел, затормозить их вращение и за несколько сотен миллионов лет поднять орбиту спутника до 420 тыс. км., что неизбежно закончилось бы его потерей. В дальнейшем Венера и потерянный спутник должны были неоднократно сближаться, причем были возможны вторичные захваты последнего.

Как ни фантастична эта гипотеза на первый взгляд, ее сторонники указывают, что она непринужденно объясняет потерю вращательного момента Венерой и Меркурием; ранний разогрев коры обоих тел; значение кинематической характеристики (интеграла Якоби) для Меркурия, удовлетворяющее орбите Венеры, и, наконец, формирование Меркурия на орбите Венеры с дальнейшим переходом на его нынешнюю орбиту.

Литература

Роузвер Н.Т. Перигелий Меркурия: от Леверье до Эйнштейна. М.: Мир, 1985.

Сурдин В.Г. Приливные явления во Вселенной. М.: Знание, 1986.

Davies М.Е. et al. Atlas of Mercury. NASA, 1978. http://history.nasa.gov/SP-423/sp423.htm

Глава V

ВЕНЕРА

Характеристики Венеры

Большая полуось орбиты

108,2 млн. км.=0,723 а.е.

Сидерический период обращения («год»)

224,7 сут.=0,615 лет.

Синодический период (средний)

584,0 сут.=1,60 лет.

Сидерический период вращения («звездные сутки»)

243,02 сут. (вращение обратное).

Наклонение орбиты к эклиптике

3,4°.

Эксцентриситет орбиты

0,0068.

Средняя орбитальная скорость

35 км/с.

Наклон экватора к орбите (вращение обратное)

2,6°.

Масса планеты

4,871x10

24

кг.=0,815 М

.

Средний радиус по верхней границе облачного слоя

6120 км.

Средний радиус поверхности

6051 км.=0,949 R

.

Средняя плотность

5,24 г/см

3

.

Ускорение свободного падения

8,87 м/с

2

.

Безразмерный момент инерции (в единицах MR

Поделиться:
Популярные книги

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Убивать чтобы жить 9

Бор Жорж
9. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 9

Аргумент барона Бронина 3

Ковальчук Олег Валентинович
3. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Аргумент барона Бронина 3

Затерянные земли или Великий Поход

Михайлов Дем Алексеевич
8. Господство клана Неспящих
Фантастика:
фэнтези
рпг
7.89
рейтинг книги
Затерянные земли или Великий Поход

Кодекс Крови. Книга ХI

Борзых М.
11. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХI

Орден Багровой бури. Книга 1

Ермоленков Алексей
1. Орден Багровой бури
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Орден Багровой бури. Книга 1

Идеальный мир для Лекаря 25

Сапфир Олег
25. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 25

Отмороженный

Гарцевич Евгений Александрович
1. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный

Законы Рода. Том 10

Flow Ascold
10. Граф Берестьев
Фантастика:
юмористическая фантастика
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 10

Имя нам Легион. Том 2

Дорничев Дмитрий
2. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 2

Возрождение Феникса. Том 2

Володин Григорий Григорьевич
2. Возрождение Феникса
Фантастика:
фэнтези
попаданцы
альтернативная история
6.92
рейтинг книги
Возрождение Феникса. Том 2

Убивать чтобы жить 5

Бор Жорж
5. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 5

Безумный Макс. Ротмистр Империи

Ланцов Михаил Алексеевич
2. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
4.67
рейтинг книги
Безумный Макс. Ротмистр Империи

Санек 2

Седой Василий
2. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 2