Чтение онлайн

на главную - закладки

Жанры

Солнечная система (Астрономия и астрофизика)
Шрифт:

Природа северной и южной полярных шапок неодинакова. Северная шапка больше по размеру и состоит, главным образом, из водяного льда, а южная в основном из замерзшего углекислого газа. Причина этого в различии средней сезонной температуры и продолжительности сезонов в северном и южном полушариях.

Особенности движения Марса

Сезонные явления определяются тем: как в течение года изменяется поток солнечного тепла на планету в целом и как он перераспределяется между

ее частями. Первое обстоятельство зависит от эксцентриситета орбиты; второе — от ориентации оси вращения планеты по отношению к ее орбитальной плоскости и перигелию (если эксцентриситет велик).

Положение полярной оси Марса не остается постоянным: под влиянием солнечного притяжения, действующего на экваториальное вздутие планеты, ось Марса прецессирует с периодом около 173000 лет. У Земли этот период около 26000 лет, поскольку вместе с более близким Солнцем на нее еще вдвое сильнее действует Луна. Так что в смысле прецесси оси вращения Марс спокойнее Земли.

Однако плоскость орбиты Марса испытывает значительно большие возмущения, чем плоскость земной орбиты. В основном под влиянием Юпитера она изменяет свой наклон с периодом около 1,2 млн. лет и прецессирует с периодом около 70000 лет. Это приводит к тому, что наклон оси вращения Марса к плоскости его орбиты испытывает колебания с периодом около 120 тыс. лет, изменяясь в пределах от 13° до 42°, т.е. на ±15° от среднего положения i=28°. Для сравнения укажем, что наклон земной оси к ее орбите колеблется всего на ±1°.

Форма орбиты Марса также непостоянна: под влиянием планетных возмущений эксцентриситет меняется от 0,0 до 0,12. Вместе с очень сильным изменением наклона оси к орбите это должно вызывать контрастную смену климата с характерным временем 105 лет. Быть может именно в этом причина периодической структуры полярных шапок Марса, напоминающей годовые кольца деревьев. Заметим, однако, что максимальный наклон оси вращения Марса (42°) остается в пределах того диапазона (0°—60°), который обеспечивает минимальную среднегодовую инсоляцию на полюсах вращения планеты. Только в том случае, если ось наклонена на угол более 60°, среднегодовой поток солнечного тепла на полюса превышает этот поток на экваториальные точки планеты.

Потери воды в первую половину истории Марса

Примерно 3 млрд. лет назад разогрев коры планеты под действием эндогенных источников тепла (распад радиоактивных элементов и уплотнение ядра планеты) стал достаточно заметным. Именно в эту пору, по-видимому, кое-где начал таять подпочвенный лед. Одним источником водяного пара на планете была вода, выделявшаяся вулканами и заполнявшая водоемы на поверхности, другим — таяние подпочвенной мерзлоты из-за разогрева коры планеты. По данным об изотопном составе азота и некоторым другим сведениям было найдено, что максимальное давление у поверхности планеты могло достигать 1—3 бар. (на Земле сейчас 1 бар.). При таком давлении возникает сильный парниковый эффект и тает не только лед из углекислого газа, но и часть водяной полярной шапки.

Как только на поверхности появилась вода, давление углекислого газа стало быстро падать, поскольку он хорошо растворяется в воде. Уходящие в подгрунтовые резервуары реки уносили его с собой, где он, скорее всего, выпадал в осадок в составе карбонатов. Одновременно происходила катастрофическая потеря водорода из атмосферы. Молекулы водяного пара диссоциировали под действием ультрафиолетового излучения Солнца, а водород ускользал в космическое пространство. Относительно небольшие запасы воды на поверхности планеты были исчерпаны, парниковый эффект уменьшился, температура понизилась, значительная часть подпочвенной воды перешла в состояние вечной мерзлоты, а какое-то количество ее оказалось химически связанным.

Вместе с вечной мерзлотой снова появились полярные шапки, которые стали ловушками для остатков водяного пара в атмосфере. Если предположить, что потери водорода шли с той же скоростью, что и теперь, потерянная вода могла бы составить слой толщиной в 100 м., а по некоторым оценкам и больше.

Проведенная

в конце 1990-х гг. съемка рельефа планеты с аппарата «Марс Глобал Сервейер» показала, что на территории Великой Северной Равнины можно выделить протяженную береговую линию, находящуюся на одном горизонтальном уровне. По-видимому, она окаймляла Северный океан Марса. Удалось проследить, как постепенно береговая линия сокращалась, а океан отступал, разделившись на две части. Возможно, океан был причиной того, что северный полярный район сейчас примерно на 4 км. ниже южного.

Признаки высокой активности планеты приходятся на очень далекие времена, главным образом на первую половину истории Марса. К этому времени относятся грандиозные пирокластические извержения, засыпавшие пеплом едва ли не половину поверхности планеты, плотная теплая атмосфера, реки, крупнее земных, образование огромных каньонов и феерия вулканов в стране Фарсида.

Новые гипотезы о природе полярных районов

Образование полярных слоистых отложений связано с очень низкой зимней температурой в районах полюсов, ниже температуры конденсации и водяного пара, и углекислого газа. Роль центров конденсации играют мельчайшие пылинки, взвешенные в атмосфере и ответственные за розовый цвет неба Марса. На них нарастает слой инея, пылинка утяжеляется и выпадает на поверхность. Таков необычный путь конденсации ничтожных количеств влаги, присутствующей в атмосфере. За сезон выпадает один слой частиц, однако он вряд ли отличим от предыдущего и последующего. Слои, которые видны на рис., отмечают более крупные климатические изменения. Слоистые отложения уходят на большую глубину под полярными шапками, вероятно, на 1—2 км. вблизи южной и на 4—6 км. у северной полярной шапки.

В экваториальном поясе известно несколько районов, по природе похожих на полярные отложения, но меньшей толщины. Протяженность каждого из них около 1000 км. Таковы, например, экваториальные слоистые отложения в районе 4°ю.ш., 156°з.д. Есть основания считать, что они действительно возникли в полярном районе и что процесс их таяния растянулся на несколько сотен миллионов или даже миллиард лет, вплоть до наших дней. По мере сублимации льда и уноса ветром пылевых частиц из-под отложений появляется неповрежденный древний кратерный рельеф. Такие же отложения, наполовину скрывающие рельеф «дна», находятся у 73°ю.ш., 215°з.д., в районе северной полярной шапки.

Первые предположения о том, каким образом полярные отложения могли оказаться вблизи экватора, возникли, когда было обнаружено, что району слоистых отложений в экваториальной зоне соответствует похожий участок на диаметрально противоположной стороне планеты. Возникла гипотеза о миграции полюсов. Она хорошо объясняла наблюдаемые факты, но требовала настолько большого смещения полюсов, что объяснить его колебаниями полярной оси было бы невозможно.

Наиболее вероятная причина смещения полюсов лежит в перераспределении масс в мантии планеты (или даже в ее коре). Если вновь возникшие наиболее плотные части мантии (масконы) находятся достаточно далеко от экватора, нарушается устойчивость вращения, и в результате вся кора Марса, которая представляет собой как бы единую плиту, стремится сместиться таким образом, чтобы маскон переместился к экватору. Положение оси вращения планеты в пространстве при этом не изменяется. Разумеется, несбалансированная масса не обязательно должна быть масконом у поверхности, это может быть и какая-то масса в глубине планеты или заполняемые лавой огромные кратерные моря.

Выявлению движений коры, происходивших в истории Марса, способствуют хорошо сохранившиеся древние районы с возрастом почти 4 млрд. лет. Путь полярных районов за длительное время похож на грандиозную подкову. Северный полюс побывал вблизи северо-западной окраины массива Олимп, в точке 45°с.ш., 160°з.д., затем подолгу оставался в трех районах сегодняшнего экватора и оставил там много полярных слоистых отложений. Одно из смещений, последнее по времени, совпадает с периодом мощных вулканических извержений в районах горы Олимп и Фарсиды. Предполагается, что одной из причин смещения как раз и была вулканическая активность и связанный с нею перенос масс.

Поделиться:
Популярные книги

Пипец Котенку! 2

Майерс Александр
2. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 2

70 Рублей - 2. Здравствуй S-T-I-K-S

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
постапокалипсис
5.00
рейтинг книги
70 Рублей - 2. Здравствуй S-T-I-K-S

Два лика Ирэн

Ром Полина
Любовные романы:
любовно-фантастические романы
6.08
рейтинг книги
Два лика Ирэн

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Невеста вне отбора

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
7.33
рейтинг книги
Невеста вне отбора

Жизнь в подарок

Седой Василий
2. Калейдоскоп
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Жизнь в подарок

По машинам! Танкист из будущего

Корчевский Юрий Григорьевич
1. Я из СМЕРШа
Фантастика:
боевая фантастика
попаданцы
альтернативная история
6.36
рейтинг книги
По машинам! Танкист из будущего

Новый Рал 2

Северный Лис
2. Рал!
Фантастика:
фэнтези
7.62
рейтинг книги
Новый Рал 2

Аргумент барона Бронина 2

Ковальчук Олег Валентинович
2. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Аргумент барона Бронина 2

Эволюционер из трущоб. Том 5

Панарин Антон
5. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 5

Миф об идеальном мужчине

Устинова Татьяна Витальевна
Детективы:
прочие детективы
9.23
рейтинг книги
Миф об идеальном мужчине

Возвышение Меркурия. Книга 2

Кронос Александр
2. Меркурий
Фантастика:
фэнтези
5.00
рейтинг книги
Возвышение Меркурия. Книга 2

Неудержимый. Книга XXII

Боярский Андрей
22. Неудержимый
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Неудержимый. Книга XXII

Шлейф сандала

Лерн Анна
Фантастика:
фэнтези
6.00
рейтинг книги
Шлейф сандала