Солнечные элементы
Шрифт:
Еще два вида воздействий, приводящих к необратимой деградации солнечных элементов, привлекли внимание исследователей в последние годы. Один из них вызывает деградацию, которая условно может быть названа химико-термической, второй — фотонную.
Химико-термическая деградация возникает, например, из-за влияния остаточной атмосферы космического корабля и выхлопных газов двигателей на параметры солнечных элементов. Не менее опасна для солнечных элементов наземных фотогенераторов и их оптических покрытий загрязненная газообразными щелочными и кислотными отходами атмосфера больших городов. Необычные химические реакции с участием свободных радикалов, происходящие при повышенной температуре на торцевых и свободных от покрытий поверхностях солнечных элементов, вызывают закорачивание электронно-дырочных переходов,
Влияние фотонной деградации было не сразу обнаружено, поскольку его довольно трудно отделить от воздействия корпускулярной радиации и химико-термической деградации.
Длительное время считалось, что повреждающее воздействие самого солнечного излучения на солнечные элементы может выразиться лишь в потемнении оптических покрытий. Разработка светостойких многослойных покрытий, в которых верхний слой — стеклопленка с добавлением двуокиси церия — поглощает все ультрафиолетовое излучение с длиной волны короче 0?36 мкм, позволила добиться уменьшения деградации элементов, вызываемой ухудшением оптических свойств покрытий, до весьма малых значений (0,5–2,5 %) даже в условиях непрерывной работы на борту космических аппаратов в течение нескольких лет.
В связи с этим для многих исследователей было неожиданностью обнаруженное явление ухудшения свойств самих элементов непосредственно под действием оптической части солнечного излучения. В ходе первых опытов, когда изучалось совместное воздействие солнечного света, корпускулярного облучения и температуры, выяснились некоторые важные особенности одновременного влияния нескольких повреждающих факторов на свойства полупроводниковых материалов и солнечных элементов. Такие опыты достаточно полно отражают реальные условия эксплуатации солнечных элементов как в космических, так и в наземных условиях.
Было показано, что солнечные элементы с низким содержанием кислорода в исходных пластинах кремния, полученного методом бестигельной зонной плавки, обладают высокой степенью фотонной деградации — снижение тока, вызванное интенсивным освещением этих элементов, может составлять 10–12 %. На основании результатов экспериментов, проведенных без освещения, подобные солнечные элементы считались более радиационно стойкими по сравнению с элементами на основе выращенного методом Чохральского кремния с относительно высоким содержанием кислорода. Возможно, что причина ухудшения свойств солнечных элементов из кристаллов бескислородного кремния связана с большой плотностью дислокаций в них. Интенсивное освещение приводит к освобождению и активации захваченных дислокациями точечных дефектов, в состав которых входит атом бора. Было установлено, что дополнительное введение кислорода и углерода оказывает стабилизирующее действие на поведение солнечных элементов при освещении, особенно если общее содержание атомов углерода и кислорода в кремнии превышает 1017 см– 3.
В процессе фотонной деградации при внеатмосферной плотности потока падающего солнечного излучения насыщение наступает, как правило, после освещения в течение 20–40 ч при температуре, близкой к комнатной, а при повышении температуры элементов до 50–60o C и через более короткое время.
При освещении солнечного элемента или приложении к нему высокого напряжения смещения в прямом направлении для элементов п+— р– типа (верхний освещаемый n– слой получен диффузией фосфора) наблюдается уменьшение выходной мощности и заметное снижение длинноволновой чувствительности, а для элементов p-n– типа характерно (при наличии в спектре падающего света излучения с длиной волны 0,35— 0,45 мкм) обратное явление — увеличение выходной мощности и спектральной чувствительности в коротковолновой области. Ухудшение собирания носителей из базового слоя солнечных элементов п-p– типа обусловлено наличием рекомбинационного уровня, расположенного на 0,37 эВ ниже зоны проводимости. Обычно этот уровень электрически нейтрален, но при большой световой или электрической инжекции носителей заряда в материал становится активным. Возникновение этого рекомбинационного
Фотонную деградацию особенно необходимо учитывать при создании эталонных солнечных элементов для настройки имитаторов Солнца, которые должны отличаться высокой стабильностью свойств.
Нет сомнений, что обнаруженные сравнительно недавно новые типы деградации солнечных элементов подвергнутся тщательному и всестороннему изучению, будут найдены способы их предотвращения, и солнечные элементы сохранят за собой справедливое определение одного из самых эффективных, стабильных и надежных источников электроэнергии, полезно преобразующих излучение Солнца в удобную для человека электрическую форму энергии.
ЗАКЛЮЧЕНИЕ
Еще много непредвиденных трудностей, возникающих в ходе создания, усовершенствования и испытаний новых типов солнечных элементов в космосе и на Земле, предстоит преодолеть разработчикам.
Выяснилось, например, что атомарный кислород, существующий в околоземном космическом пространстве, активно разрушает каптоновую полимерную пленку, на которой укрепляются солнечные батареи большинства американских космических аппаратов, а электрические разряды, возникающие вследствие значительной разности потенциалов между накапливающими поверхностный заряд диэлектрическими покрытиями верхней и тыльной сторон элементов, могут привести к выходу из строя части батарей.
Правда, пути решения этих проблем уже намечены: следует, вероятно, заменить полимерную основу несущих панелей на стеклоткань; поверхностные же заряды с диэлектрических покрытий будут удаляться, если в состав полимеров или стекла ввести компоненты, несколько увеличивающие объемную проводимость, а на их внутреннюю и внешнюю стороны предварительно нанести прозрачные проводящие слои оксидов индия, олова или их смеси, причем эти слои должны быть электрически соединены между собой и с корпусом аппарата.
Прозрачные проводящие оксиды индия и олова представляют собой широкозонные полупроводниковые соединения, весьма подходящие для создания фотоактивных оптических окон в солнечных элементах на основе гетероструктур, и их применение в новых конструкциях солнечных элементов из кремния, фосфида индия, аморфного кремния становится все более распространенным. КПД солнечных элементов на основе гетероструктуры, образованной слоем из смеси оксидов олова и индия и монокристаллом фосфида индия, уже сейчас превысил 16 %, причем эти элементы отличает высокая стойкость к радиации и сравнительная простота в изготовлении.
На научных совещаниях советских специалистов, на встрече ученых стран СЭВ в Ашхабаде в сентябре 1986 г. на 17-й и 18-й конференциях по фотоэлектрическому методу преобразования солнечной энергии в США, в статьях, опубликованных в 1985–1987 гг., показано, что в этой новой, активно развивающейся области науки и техники получены значительные теоретические и практические результаты.
Предложены, в частности, солнечные элементы со сверхрешетками, образованные тончайшими чередующимися эпитаксиальными слоями на основе арсенида галлия и твердых растворов алюминий — галлий-мышьяк, галлий — индий — мышьяк и галлий — сурьма — мышьяк. Кроме высокого КПД, предложенные элементы отличает исключительная стойкость к радиации, ибо практически полное собирание неосновных носителей заряда происходит в них, даже если диффузионная длина носителей заряда после воздействия радиации составляет всего 300–500 А.
Кодекс Крови. Книга ХVI
16. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
рейтинг книги
Барону наплевать на правила
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
рейтинг книги
Отличница для ректора. Запретная магия
Любовные романы:
любовно-фантастические романы
рейтинг книги
Лубянка. Сталин и НКВД – НКГБ – ГУКР «Смерш» 1939-март 1946
Россия. XX век. Документы
Документальная литература:
прочая документальная литература
военная документалистика
рейтинг книги
Дракон с подарком
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
рейтинг книги
Двойня для босса. Стерильные чувства
Любовные романы:
современные любовные романы
рейтинг книги
Кодекс Охотника. Книга VIII
8. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
На границе империй. Том 3
3. Фортуна дама переменчивая
Фантастика:
космическая фантастика
рейтинг книги
Идеальный мир для Лекаря 13
13. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
рейтинг книги
Вперед в прошлое 2
2. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Темный Лекарь 7
7. Темный Лекарь
Фантастика:
попаданцы
аниме
фэнтези
рейтинг книги
Наследник
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
рейтинг книги
