Современная космология: философские горизонты
Шрифт:
Как же решался вопрос о законах сохранения при последующих этапах развития и трактовках ОТО? Вопреки убеждению Эйнштейна, пришлось обратиться к такому изменению ОТО, при котором не допускалось бы нарушение законов сохранения. Будет уместно хотя бы кратко сообщить некоторые сведения об этой переделке, так как они дополняют и оправдывают критику со стороны Логунова. Речь идёт о гамильтоновом подходе к ОТО, предложенном не только Логуновым. Вот в чём состоит суть переделки. При введении в ОТО функции Гамильтона надо было следить за тем, чтобы данная функция, выражающая сумму кинетической и потенциальной энергии гравитационного поля, не превращалась при преобразовании координатной системы в нуль. Л.Д. Фаддеев по данному поводу пишет: «Гамильтонов подход к этой теории, предложенный Дираком в начале 50-х годов и далее развитый многими людьми, привёл к естественному пониманию энергии»1.
С этим подходом связана гипотеза о положительности массы в ОТО. Э. Виттен нашёл способ подтвердить данную
Доказательство Яу и Шёна включало в себя нелинейные уравнения в частных производных и было важным достижением; частично за него авторы, по словам Атья, были награждены филдсовской медалью на конгрессе в Варшаве. Но как видно, не все специалисты, и среди них Логунов, признали его достаточно убедительным. Поэтому, сообщает Атья, весьма удивительным оказалось намеченное Виттеном значительно более простое доказательство, основанное на линейных уравнениях в частных производных. «Более того, Виттен привлёк спиноры и соответствующий оператор Дирака. Его подход берёт начало в более ранних идеях супергравитации и, что типично для интуиции и техники Виттена, в конце концов приводит к простому и вполне классическому доказательству». Л.Д. Фаддеев подтвердил корректность решения задачи, данного Виттеном. При гамильтоновом подходе к ОТО у Виттена тензор энергии-импульса-материи оказывается явно положительным, из чего вытекает положительность функции Гамильтона. Для нас здесь, между прочим, очень важно заметить введение в релятивистскую теорию гравитации спиноров. К этому вопросу мы ещё вернёмся при анализе специфики собственно логуновской релятивистской теории гравитации.
РТГ Логунова базируется на следующих пяти положениях.
1. Пространство (х) Минковского есть фундаментальное пространство.
2. Гравитационное поле в указанном пространстве описывается симметричным тензором второго ранга Ф и является реальным физическим полем, обладающим плотностью энергии-импульса, ненулевой массой покоя и спиновыми состояниями 2 и 0.
3. Движение вещества под действием гравитационного поля Ф в пространстве с метрикой эквивалентно его движению в эффективном римановом пространстве с метрикой g, определяемой (в силу универсальности гравита-ционных взаимодействий) «подключением» гравитационного поля Ф к метрическому тензору по принципу геометризации.
4. Даётся способ определения плотности лагранжиана.
Далее утверждается, что на основании этих положений релятивистская теория гравитации строится однозначно. Её предсказания подробно излагаются в книге A.A. Логунова «Лекции по теории относительности (современный анализ). М.: изд. МГУ, 1984, изд. 2-е[149]. В нашу задачу не входит сколь-нибудь подробный разбор всех выводов и предсказаний РТГ, которые, несомненно, представляют огромную научную ценность. Главное в нашей тематике — космологические представления, вытекающие из РТГ, и их сопоставление с теоретическими результатами ОТО.
§ 2. Сравнение космологических следствий РТГ и ОТО
РТГ Логунова напрямую, без всяких околичностей, устраняет свойственное ОТО отождествление сил инерции и сил гравитации. Метрический тензор отвечает за силы инерции, в то время как тензор гравитационного поля Ф показывает, в какой мере псевдоевклидово пространство Минковского деформируется под воздействием гравитации. Но как был выбран за исходное условие РТГ мир Минковского? Автор показывает, что, склоняясь к такому решению, ему пришлось исходить из трёх логически возможных вариантов выбора.
Любому физическому полю, указывает Логунов, соответствует некоторая геометрия, называемая естественной, именно такая, что фронт свободной волны этого физического поля движется по геодезическим естественного пространства-времени. Требование законов сохранения для замкнутой системы физических полей ограничивает наш выбор естественной геометрии лишь тремя типами четырёхмерных геометрий[150]. Речь идёт о трёх типах четырёхмерных пространств, обладающих свойствами однородности и изотропии в такой степени, что они допускают получение всех десяти интегральных законов сохранения
Итак, полевые уравнения РТГ обладают принципиальным свойством: отделять всё, относящееся к системе инерции, от всего того, что имеет отношение к гравитационному полю. Вместе с тем все полевые переменные в уравнениях РТГ, являются функциями координат мира Минковского[152].
Логунов далее отмечает, что его подход к построению релятивистской теории гравитации отличается и от подхода В.А. Фока, хотя с внешней стороны может показаться, что оба подхода мало различаются между собой. В.А. Фок, оперируя с уравнениями Гильберта-Эйнштейна, пытался выделить для их решения привилегированную систему отсчёта, которую он называл гармоническими координатами. Это такая система отсчёта, которая определяется с точностью до преобразований Лоренца. Гармоническим координатам отводится место на бесконечности. Это краевое условие означает, что на бесконечно удалённых частях пространства множество ковариантных систем отсчёта сводятся к единой системе. Логунов соглашается с Фоком в том отношении, что краевые и начальные условия в ОТО имеют столь же важное значение, как и сами уравнения, которые не могут быть решены, если такие условия не указаны. Но гармонические координаты, как выяснилось, не могут служить краевым условием во всех случаях. В частности, теоретические предсказания ОТО, взятой в гармонических координатах, не совпадают с её предсказаниями, полученными в шварцшильдовской метрике. И не только.
«Неодинаковые предсказания ОТО в указанных метриках (шварцшильдовской и гармонической. — Л.A.) получаются и для времени обращения спутника вокруг сферически симметричного тела, как, впрочем, и для всех иных гравитационных эффектов»[153].
Мы неслучайно обращаем внимание на пример с гармоническими координатами, работая с которыми, в одних случаях можно получить правильные результаты, в других — неправильные. Дело в том, как показывает автор РТГ, что в зависимости от выбора исходных координатных условий в теории гравитации меняется метрический тензор. Следовательно, меняется сам строй теории и все связанные с ней предсказания. В общей теории относительности никаких ограничений на выбор координатных условий не накладывается, поэтому она как бы распадается на ряд разных теорий, выбор каждой из которых совершается ad hoc. Логунов это убедительно показывает и, в конечном счёте, делает следующее резюме: «Поскольку <…> в ОТО разным координатным условиям соответствуют разные метрические тензоры (в заданной системе координат, т. е. при заданной арифметизации пространства), а на выбор координатных условий никаких ограничений нет, то в силу сказанного выше, как бы ни высказывались на этот счёт «эксперты» ОТО, можно утверждать, что ОТО в принципе не способна давать определённых предсказаний о гравитационных эффектах, в чём состоит ещё один её принципиальный недостаток»[154].
Создаётся впечатление, добавим мы со своей стороны, что то или иное решение уравнений Гильберта-Эйнштейна в рамках ОТО подгоняется под тот или иной заранее известный гравитационный эффект. Часто считают, что ОТО предсказала существование чёрных дыр, но гипотезу о существовании астрофизических объектов, обладающих существенными свойствами чёрных дыр, выдвинул ещё в 1796 году П.С. Лаплас. Руководствуясь законом всемирного тяготения, он пришёл к выводу, что звезда с плотностью вещества, равной плотности Земли и диаметром в 250 раз больше диаметра Солнца, будет характеризоваться столь высокой параболической скоростью, что она превзойдёт скорость распространения света. (Параболической скоростью в данном случае называется минимальная скорость, необходимая для того, чтобы преодолеть гравитационное поле определённого объекта и оторваться от него). Поэтому ни один световой луч не покинет её, и она будет невидимой для наблюдателя. Подобный вывод был сделан современником Лапласа английским геологом Дж. Мичеллом в 1783 году, но его труды менее известны. Стоит обратить внимание на лапласовское представление о наличии сверхсветовых явлений, соотносимых с «невидимыми звёздами».