Современная космология: философские горизонты
Шрифт:
Предметом стандартной квантовой механики являются в основном объекты атомного и субатомного уровня, в том числе элементарные частицы[186]. Уровень физической реальности, соответствующий этим объектам, называется микромиром, и его то и описывает квантовая механика[187]. Но это должно тогда означать, что Вселенная, эволюционировавшая от планковского масштаба до размеров атома, имела в этот период размеры, соответствующие объектам микромира6. А это, в свою очередь, означает, что она являлась квантовым объектом в стандартном понимании квантовой механики.
Назовем период существования Вселенной, в течение которого ее размеры изменялись от планковского до атомного, эпохой квантовой Вселенной или эпохой квантовой космологии. Поскольку мы начали обсуждение на уровне «простейших соображений», то и в этом случае выделение квантовой Вселенной в качестве определенного приближения является вполне допустимым. Такое подробное обсуждение в общем-то известных вещей нам
Но это не единственный вариант понимания квантовой Вселенной. Согласно квантовой механике можно написать волновую функцию как для макроскопической экспериментальной установки с «котом Шредингера», так и для всей Вселенной. Получается, что не только микроскопический, но и макроскопический и даже мегаскопический космологический уровень тоже являются квантовыми. С точки же зрения эвереттовского подхода квантовое описание является единственным и истинным, а все остальные — приближения, проекции, которые наше сознание воспринимает как классические миры[188]. С этой точки зрения Вселенная всегда была и остается квантовой. Но каков тогда смысл квантованности всего и вся во Вселенной? Являются ли, например, стол и Галактика квантовыми объек-тами? В частности, обладают ли они свойством корпускулярно-волнового дуализма? Движутся ли они бестраекторно и т. д.? Очевидно, что нет. И здесь в концептуальном плане не помогает точка зрения о том, что эти уровни — всего лишь приближения. В любом исследовании всегда очень важно не пропустить новый уровень эмерджентности — появления нового качества. Макро- и мегауровни физической реальности являются новыми качествами реальности, они обладают принципиально новыми фундаментальными свойствами, и описывать, например, жизнь социума с точки зрения КТП достаточно бессмысленно, если вообще возможно (практически). Хотя, сам социум состоит из элементарных квантовых объектов и именно их взаимодействия, в конечном счете, его и определяют. Возможно, одно из активно развиваемых направлений квантовой механики — теория декогеренции — сможет разрешить проблему появления макроскопических свойств и самих макрообъектов.
И еще один вопрос, выяснение ответа на который может помочь пониманию того, что такое квантовая Вселенная: стремление понять природу квантовой Вселенной ведет к необходимости уточнить и углубить понимание того, что является квантовой теорией. Некоторым этот вопрос кажется почти метафизическим. Для работающих физиков такой вопрос представляется несерьезным. Они настолько привыкли работать в рамках квантовой теории, настолько она хорошо описывает широчайший спектр физических явлений, что с точки зрения эффективности и прагматики попытки выяснять еще какой-то смысл квантованности считаются наивными. Однако философия науки нередко находит материал для исследований именно в таких «безнадежных» вопросах. И действительно, что же такое квантовая механика? Можно ли ее однозначно определить как теорию операторного анализа в гильбертовом пространстве? Или критерием для квантовой теории может служить наличие хороших правил квантования? Или, наконец, может быть квантовой можно называть именно ту теорию, в которой присутствует постоянная Планка, а физические величины квантованы? Или только все это вместе[189]? Естественно, что все эти неясности и нюансы только усложняют создание и понимание квантовой космологии. Для нашего дальнейшего анализа мы будем использовать понимание квантовой теории, в которой определяющую роль играет постоянная Планка и квантованность физических величин.
Таким образом, по крайней мере, на некоторых этапах своей эволюции Вселенная как целое обладала квантовыми свойствами. С методологической точки зрения простой перенос любых существующих представлений на космологический уровень всегда ограничен, хотя в современной космологии подобное нередко происходит. Это тем более справедливо для ранней (квантовой) Вселенной. В космологической литературе часто приводятся расчеты моментов времени, температуры, размеров, плотности и т. д. Вселенной для различных стадий ее эволюции, буквально перенося макроскопические представления на соответствующий космологический уровень. При этом теряется качество этого уровня реальности, и выводы оказываются пригодными только к, так называемым, моделям «игрушечного мира» (toy-world).
Рассмотрим, например, в рамках стандартной космологической модели расширяющуюся Вселенную, когда она имела размеры атома. В рамках теории можно посчитать момент времени, когда это было, соответствующую температуру, плотность и т. д. Как определенное приближение это вполне корректно, однако рассмотрим более внимательно, что может из себя представлять Вселенная-атом[190].
Как мы уже отмечали, подобная Вселенная, как и сам атом, — квантовая система. Но известно, что очень сложные ядра атомов (трансурановые атомы) крайне неустойчивы.
Можно предположить, что в космологии существует многообразие онтологий, большинство из которых нам пока неизвестны. В этом плане можно принять термин П. Теллера о существовании «онтологического плюрализма»[192]. Причем, на наш взгляд, сам плюрализм в данном случае следует понимать сугубо в объективистском смысле.
Поскольку в основании квантовой космологии кроме релятивистских лежат еще и квантовые представления, то физическое содержание этой дисциплины в существенной степени зависит от выбранной интерпретации квантовой механики. Полиинтерпретационный характер квантовой механики ставит множество проблем и в отношении построения квантовой космологии. Так, например, Р. Пенроуз отмечает, что в ранней Вселенной «не существовало экспериментаторов, проводящих «измерения», поэтому не ясно, как следует пользоваться стандартной «копенгагенской» интерпретацией…»[193]. В силу своей нетривиальности, эвереттовская трактовка квантовой механики физически также далека от ясного понимания, и Р. Пенроуз лишь констатирует, что симметричное состояние Вселенной можно представить в виде суперпозиции многих пространственновременных геометрий. В свою очередь, наличие декогеренции, возможно, позволит «трактовать нашу квантовую суперпозицию различных геометрий как вероятностную смесь различных геометрий»[194].
Следует обратить внимание на его точку зрения о том, что «На практике теоретики, по-видимому, склонны придерживаться некоторой формы «практической» интерпретации…»[195]. В целом свой взгляд на концептуальную ситуацию в квантовой теории он формулирует следующим образом. «Ясно, что пока мы далеки от теории, которая смогла бы реально ответить на все эти вопросы. Но я надеюсь, что сумел убедить читателя в фундаментальной необходимости иметь квантовую механику с жизнеспособной онтологией. Эта проблема… представляет не только философский интерес»[196]. Таким образом, ввиду неоднозначности понимания физического содержания квантовой механики как одного из краеугольных камней будущей квантовой теории гравитации в основания этой теории автоматически вкрадывается неоднозначность и неопределенность концептуального порядка.
3. Онтологический анализ фундаментальных объектов квантовой космологии (струны, браны, петли и др.)
Для построения квантовой космологии необходимо создать квантовую теорию гравитации. Считается, что квантовая теория гравитации может быть построена именно на планковском масштабе. Но в космологическом плане (момент начала расширения Вселенной) на этом масштабе, возможно, унифицируются все 4 фундаментальные взаимодействия, следовательно, единая теория должна обрести силу на планковском уровне. Отсюда следует, что в определенном смысле квантовая теория гравитации, единая теория, а также Планковская космология тождественны.
Работы по созданию квантовой теории гравитации ведутся уже более полстолетия, и вариантов такой теории было предложено достаточно[197]. В настоящее время наибо-лее перспективными на роль такой теории считаются две теории: теория суперструн (ТСС) и теория петлевой квантовой гравитации (ТПКГ). Существует обширная литература, посвященная этим теориям1. Нас же в данном разделе будет интересовать вопрос об онтологии фундаментальных, космологообразующих объектов этих теорий. Актуальность онтологического анализа в квантовой космологии определяется необходимостью выяснения природы экстремальных состояний материи[198], прежде всего планковского состояния, а также в связи с глубокой опосредованностью современного физического познания.