Современная научная картина мира
Шрифт:
Мадлен V (поздний мадлен) (Вюрм IV Дриас I А 2, 15 800/ Вюрм IV Бёллинг, 13 300 – Вюрм IV Аллерёд, < 11 800).
Мадлен VI (финальный мадлен) (Вюрм IV Дриас I C, 14 300/ Вюрм IV Аддерёд, 11 800 – Вюрм IV Дриас III, 10 200).
[Азиль (мезолит) (Вюрм IV Аллерёд, 11 800 – Пребореал, 8800)]
Литература:
[52, с. 243–246]; [198]; [201]; [314]; [469]; [486]; [489]; [491]; [500]; [519]; [521].
Приложение 7
Расчетная убыль постоянной Хаббла к окраинам Вселенной
Исходя из убывания плотности вещества в расширяющемся
По той же причине очень удаленные сверхновые звезды наводят на мысли об «отталкивающей силе», поскольку они стары, удаляются медленно, а должны бы отодвигаться быстрее – значит, в древности скорость расширения была невелика, а впоследствии она возросла под влиянием «отталкивающей силы». В действительности скорости расширения в силу естественных физических законов падают к окраинам Вселенной, где она, правда, древнее, нежели поблизости от нас.
В силу тех же естественных физических законов плотность вещества в расширяющейся Вселенной тоже убывает от центра к периферии. В окрестностях Местного Сверхскопления плотность Вселенной оценивается как Ohmloc = 0,8 ± 0,5 (0,3–1,3). Плотность Великого Аттрактора превосходит эту среднюю плотность вдвое. Градиент (ступени) падения постоянной Хаббла и Ohm отвечает существующим данным. Приводим его, помещая в левом столбце расстояния от центра Вселенной, а в правом – расчетные величины постоянной Хаббла и местной плотности вещества во Вселенной (Цoc). В квадратные скобки помещены вероятные начальные условия вселенского расширения.
Как можно убедиться, в ближайших окрестностях Великого Аттрактора (в радиусе ок. 33 млн световых лет) расчетная местная плотность вещества (Ohmloc = 1,68) действительно вдвое превосходит плотность, свойственную окрестностям Местного Сверхскопления (Ohmloc = 0,8 ± 0,5), что позволяет говорить о согласии расчетов с эмпирией, поскольку они получены формально, независимо от оценок положения дел в Великом Аттракторе. О более глубокой сердцевине Вселенной данных нет.
Следует помнить, что ближняя Вселенная в радиусе 605 млн световых лет от Великого Аттрактора (куда входит Земля и измеренная нами Вселенная) уже охвачена гравитонами Великого Аттрактора, что выражается в стремящемся к нему потоке галактик Персея-Рыб – Гидры-Кентавра. Эта гравитационная обстановка должна искажать приведенный градиент
Объем нашей Вселенной составляет 9929 млрд кубических световых лет, и на периферии она продолжает разбегаться, тогда как центральные области уже вовлечены в схлопывание. Поэтому ожидаемые высокие темпы расширения в окрестностях центра Вселенной ныне подавлены ее наметившимся сжатием, наблюдаемым как поток Персея-Рыб, стремящийся к Великому Аттрактору. В итоге признаки анизотропности Вселенной затушеваны.
Половина вселенского объема (4964,5 млрд кубических светолет) отвечает радиусу Вселенной (10,6 млрд световых лет), который соотносится с расчетной постоянной Хаббла (ок. 15,3 км/с на мегапарсек) и средней плотностью вещества (OhmUniv = ~ 0,245). Этот результат укладывается в модель открытой Вселенной. Однако он не имеет фатального мировоззренческого значения, поскольку при любой величине Ohm Вселенная не в состоянии бесконечно расширяться по квантово-механическим причинам, так как не может «истончиться» сверх размерности планковской длины.
Библиография
1. Адэр Р. К. Дефект вселенского зеркала // В мире науки. 1988, № 4. С. 16–23.
2. Алексеев В. П. География человеческих рас. М.: Мысль, 1974. 351 с.
3. Алексеев В. П. О некоторых морфологических особенностях аборигенов Америки, важных для реконструкции процесса ее заселения // Исторические судьбы американских индейцев: Проблемы индеанистики. М.: Наука, 1985. С. 24–30.
4. Ансельм А. А., Уральцев Н. Г. Аксион // Физика высоких энергий: Материалы XVII Зимней школы ЛИЯФ. Л.: ЛИЯФ, 1982. С. 81–116.
5. Арефьева И. Я., Волович И. В. Суперсимметрия: Теория Калуцы – Клейна, аномалии, суперструны // Успехи физических наук. 1985. Т. 146. Вып. 4. С. 655–681.
6. Аршавский И. А. К проблеме продолжительности жизни человека в свете данных сравнительного онтогенеза // Вопросы антропологии. 1962. Вып. 12. С. 72–91.
7. Ауэрбах Ш. Проблемы мутагенеза. М.: Мир, 1978. 463 с.
8. Бадер О. Н. Каповая пещера. Палеолитическая живопись. М.: Наука, 1965. 34 с.
9. Барбашов Б. М., Нестеренко В. В. Суперструны – новый подход к единой теории фундаментальных взаимодействий // Успехи физических наук. 1986. Т. 150. Вып. 4. С. 489–524.
10. Берг Л. С. Эмбриональные черты в строении человека // Л. С. Берг. Труды по теории эволюции: 1922–1930. Л.: Наука, 1977. С. 339–341.
11. Берндт Р. М., Берндт К. Х. Мир первых австралийцев. М.: Наука, 1981. 447 с.
12. Биология человека / Харрисон Дж., Уайнер Дж., Тэннер Дж., Барникот Н., Рейнолдс В. М.: Мир, 1979. 611 с.
13. Блюменшайн Р. Дж., Кавалло Дж. А. Гоминиды-падальщики и эволюция человека // В мире науки. 1992, № 11–12. С. 176–183.
14. Бокиш Г. Дворцы Крита // Вестник древней истории. 1974, № 4. С. 88–97.
15. Больцман Л. О механическом смысле второго начала теории теплоты // Л. Больцман. Избр. труды. М.: Наука, 1984. С. 9–29.
16. Бонгард-Левин Г. М. Древнеиндийская цивилизация. Изд. 2-е, перераб. и доп. М.: Наука, 1993. 320 с.
17. Бонч-Осмоловский Г. А. Палеолит Крыма: Грот Киик-Коба. М.; Л.: Изд. АН СССР, 1940. Вып. 1. 226 с.
18. Бутовская М. Л., Файнберг Л. А. У истоков человеческого общества: Поведенческие аспекты эволюции человека. М.: Наука, 1993. 256 с.
19. Валантэн Л. Субатомная физика (ядра и частицы): В 2 т. Т. 1. Элементарный подход. М.: Мир, 1986. 272 с.