Чтение онлайн

на главную - закладки

Жанры

Справочник по длинным нардам. Теория и практика игры
Шрифт:

Примеры:

– вероятность броска 5:5 равна 1 из 36, т.к. благоприятное событие всего одно: бросок 5:5, а всего возможных событий 36.

– вероятность броска 4:4 равна 1 из 36, т.к. благоприятное событие всего одно: бросок 4:4, а всего возможных событий 36.

– вероятность броска 1:1 равна 1 из 36, т.к. благоприятное событие всего одно: бросок 1:1, а всего возможных событий 36.

Ну и т.д.

ИТОГ О. Вероятности:

Какого-либо конкретного обычного броска

2/36= 5,55%.

Какого-либо

конкретного куша

1/36= 2,78%

ВЕРОЯТНОСТЬ КАКОГО-ТО УСЛОВИЯ НА БРОСКЕ (БРОСКАХ) ЗАР.

Здесь может быть много разных и в большинстве своем важных с точки зрения практической игры вероятностей.

Начнем по порядку.

А) Вероятность какого-нибудь (любого) куша, независимо какого именно:

Кушей всего 6 (1:1,2:2,3:3,4:4,5:5,6:6). Значит, вероятность равна 6/36=16,67%

Б) Вероятность обычного броска (НЕ КУШ), не зависимо от того, что именно выпадет на зарах. Вероятность, что бросок будет куш, как мы выяснили выше – 6 из 36, значит вероятность обычного броска равна 36/36-6/36= 30/36=83,33%(100%-16,67%).

В) Вероятность, что в броске будет какая-то конкретная(как правило, очень нужная или наоборот очень не нужная) цифра, независимо от того, какая цифра вторая. Рассмотрим на примере вероятности выпадения хотя бы одной Четверки.

Всего бросков 36: 1-*, 2-*, 3-*, 4-*, 5-*, 6-*. В бросках 4-* - 6 благоприятных вариантов (4-1,4-2, 4-3, 4-4, 4-5, 4-6), каждом из остальных пяти бросков по одному (1-4,2-4, 3-4, 5-4, 6-4). Итого 11 вариантов из 36. Вероятность того, что в броске будет хотя бы одна Четверка = 11/36=30,56%. С остальными цифрами все точно так же.

Итак: вероятность броска какой-то конкретной цифры хотя бы на одном из зар равна 11/36или 30,56%

Г) Вероятность, что в броске НЕ будет какой-то конкретной (одной) цифры.

Как мы выяснили выше, вероятность, что хоть одна цифра выпадет, равна 11 из 36. Значит вероятность, что она НЕ выпадет, равна (36-11=25) из 36.

Итак: вероятность броска, в котором не будет какой-то конкретной цифры равна 25/36или 69,44%

Это наиболее важные и постоянно применяемые в практике для расчетов в игре случаи.

Рассмотрим из остального многообразия еще несколько отдельных случаев.

ПРИМЕЧАНИЕ. Во избежание путаницы. В дальнейшем мы рассматриваем вероятности событий с шестеркой, но вероятности таких же событий с другими КОНКРЕТНЫМИ цифрами ровно такие же. Шестерка рассмотрена для примера .

a) Какова вероятность того, что ДВА броска подряд ни разу НЕ выпадет шестерка?

Вероятность НЕ выпадения шестерки в каждом броске равна 25/36. Значит, в двух

бросках НЕ выпадение будет равно 25/36*25/36=625/1296= 48,23%

b) Какова вероятность того, что в двух броск ах подряд выпадет хотя бы одна шестерка?

Вероятность НЕ выпадения шестерки в 2 бросках подряд 48,23% (см. выше). Отсюда получаем, что вероятность выпадения хотя бы одной шестерки в хотя бы одном из двух подряд бросков равна 100%-48,23%= 51,77%

c) Какова вероятность того, что N бросков подряд ни разу НЕ выпадет шестерка?

Вероятность НЕ выпадения шестерки в каждом броске равна 25/36. Значит, в N бросках НЕ выпадение будет равно (25/36)^ N

b) Какова вероятность того, что в N броск ах подряд выпадет хотя бы одна шестерка?Вероятность НЕ выпадения шестерки хотя бы в одном из N бросков подряд равна (25/36)^ N, значит, вероятность выпадения равна 1-(25/36)^ N

Этот ответ будет правильным для любой конкретной цифры, например для четверки:

Количество подряд бросков N

Вероятность того, что, в каком-нибудь из N бросков подряд выпадет хотя бы одна шестерка (или любая другая конкретная цифра)

Вероятность того, что, N бросков подряд НЕ выпадет ни одна шестерка (или любая другая конкретная цифра)

1

30,56%

69,44%

2

51,77%

48,23%

3

66,51%

33,49%

4

76,74%

23,26%

5

83,85%

16,15%

6

88,78%

11,22%

7

Поделиться:
Популярные книги

Иной мир. Компиляция

Шарипов Никита
Иной мир
Фантастика:
боевая фантастика
фэнтези
5.00
рейтинг книги
Иной мир. Компиляция

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Санек 2

Седой Василий
2. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 2

Ритуал для призыва профессора

Лунёва Мария
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Ритуал для призыва профессора

Адептка в мужской Академии

Завгородняя Анна Александровна
Любовные романы:
любовно-фантастические романы
6.44
рейтинг книги
Адептка в мужской Академии

По другую сторону надежды

Friyana
Фантастика:
фэнтези
5.00
рейтинг книги
По другую сторону надежды

Пипец Котенку! 2

Майерс Александр
2. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 2

Купец VI ранга

Вяч Павел
6. Купец
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Купец VI ранга

Призван, чтобы защитить?

Кириллов Сергей
2. Призван, чтобы умереть?
Фантастика:
фэнтези
рпг
7.00
рейтинг книги
Призван, чтобы защитить?

Жизнь под чужим солнцем

Михалкова Елена Ивановна
Детективы:
прочие детективы
9.10
рейтинг книги
Жизнь под чужим солнцем

Долгий путь домой

Русич Антон
Вселенная EVE Online
Фантастика:
космическая фантастика
попаданцы
6.20
рейтинг книги
Долгий путь домой

Никчёмная Наследница

Кат Зозо
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Никчёмная Наследница

Сборник книг вселенной The Elder Scrolls

Bethesda softworks
Фантастика:
фэнтези
5.00
рейтинг книги
Сборник книг вселенной The Elder Scrolls

Пятничная я. Умереть, чтобы жить

Это Хорошо
Фантастика:
детективная фантастика
6.25
рейтинг книги
Пятничная я. Умереть, чтобы жить