Статьи и речи
Шрифт:
Когда жидкость помещается в такой большой сосуд, что она занимает лишь часть его, то часть жидкости начинает испаряться или, другими словами, переходит в газообразное состояние, и этот процесс продолжается до тех пор, пока вся жидкость не испарится или пока плотность газообразной части вещества не достигнет некоторого предела. Жидкая и газообразная части вещества находятся тогда в равновесии. Если уменьшить теперь объём сосуда, то часть газа сгустится в жидкость, а если увеличить его, то часть жидкости испарится и превратится в газ.
Испарение и конденсация, при которых вещество переходит из жидкого в газообразное, а из газообразного в жидкое состояние, являются прерывными
Так, при температуре, скажем, 0°С и при обычном атмосферном давлении углекислота — газ. Если сжимать этот газ до тех пор, пока давление не поднимется приблизительно до 40 атмосфер, происходит сжижение, т. е. части вещества последовательно переходят из газообразного в жидкое состояние.
Рассматривая вещество, когда часть его уже сжижена, мы обнаруживаем, что жидкая углекислота на дне сосуда имеет все свойства жидкости и отделена отчётливой поверхностью от газообразной углекислоты, занимающей верхнюю часть сосуда.
Но мы можем превратить газообразную углекислоту при 0° С в жидкую углекислоту при 0° С, и без резкого изменения, повышая сначала температуру газа до 30°, 92 С, что является критической температурой, затем повышая давление приблизительно до 80 атмосфер и, наконец, охлаждая вещество, все ещё под высоким давлением, до нуля.
В течение всего этого процесса вещество остаётся совершенно однородным. Между веществом в обоих состояниях нет поверхности раздела, не наблюдается также какая-либо внезапная перемена, подобная той, которая имеет место в случае сжижения газа при низких температурах. Но в конце процесса вещество несомненно окажется в жидком состоянии, так как если мы теперь понизим давление до величины, несколько меньшей 40 атмосфер, мы увидим в веществе обычное разделение между его жидкой и газообразной частью, т. е. часть его испарится, а другая останется на дне сосуда, и между жидкой и газообразной частью его будет отчётливая поверхность раздела.
Переход вещества из жидкого в твёрдое состояние и обратно происходит с различной степенью внезапности. Ряд веществ, как, например, некоторые металлы с более ясно выраженной кристаллической структурой, по-видимому, очень резко переходят из совершенно жидкого состояния в совершенно твёрдое. В некоторых случаях расплавленное вещество, по-видимому, перед тем как затвердеть, делается гуще, но это может происходить благодаря образованию в ещё жидкой массе множества твёрдых кристаллов, так что до тех пор пока расплавленное вещество, в котором плавают кристаллы, все не затвердеет, консистенция этой массы становится подобной консистенции смеси песка и воды.
Есть другие вещества, в большинстве случаев коллоидальные, которые обладают тем свойством, что когда расплавленное вещество охлаждается, оно становится все более и более вязким, почти непрерывно переходя в твёрдое состояние. Это имеет место в случае смолы.
Теория состояния
Как мы видели, вещество, обладающее свойством текучести, может выдерживать напряжение только тогда, когда это напряжение равномерно во всех направлениях, т. е. тогда, когда оно носит характер гидростатического давления.
Существует большое количество веществ, которые в такой мере соответствуют этому определению текучести, что не могут оставаться в постоянном равновесии, если внутри их напряжения не являются равномерными по всем направлениям.
Однако во всех известных жидкостях или газах в тех случаях, когда движение таково, что форма их небольших объёмов непрерывно меняется, внутреннее напряжение не является равномерным по всем направлениям, но стремится задержать относительное движение частиц жидкости или газа. Способность жидкости или газа обладать неравномерностью напряжения, обусловливаемой неравномерностью движения, называется вязкостью. Все реальные жидкости или газы вязки, начиная с патоки и дёгтя и кончая водой и эфиром, воздухом и водородом.
Но если вязкость очень мала, жидкость называется подвижной, как, например, вода и эфир.
Если вязкость так велика, что значительное неравенство напряжения, хотя и вызывает постоянно возрастающее смещение, производит это так медленно, что мы с трудом его обнаруживаем, мы часто склонны считать такое вещество находящимся в твёрдом состоянии и даже рассматривать его как твёрдое тело. Так, вязкость холодной смолы или асфальта настолько велика, что вещество скорее сломается, нежели поддастся неожиданному удару; однако, если оставить его на достаточный промежуток времени, то окажется, что оно не сможет сохранить равновесие даже под действием ничтожного неравенства напряжений, вызываемого его собственным весом, и потечёт как жидкость, пока его уровень не станет всюду одинаковым. Поэтому, если мы определим жидкость как вещество, которое не может оставаться в постоянном равновесии под действием напряжения, не являющегося равномерным во всех направлениях, то мы должны назвать упомянутые вещества жидкостями, хотя они настолько вязки, что можно по ним ходить, не оставляя следов.
Если тело, форма которого была изменена приложением напряжения, стремится восстановить свою первоначальную форму, когда напряжение устранено, оно называется упругим телом.
Отношение численной величины напряжения к численной величине вызванной им деформации называется коэффициентом упругости, а отношение деформации к напряжению называется коэффициентом податливости.
Существует столько же коэффициентов, сколько существует напряжений и вызываемых ими деформаций или их компонент. Если бы величина коэффициентов упругости беспредельно увеличивалась, тело приближалось бы к состоянию абсолютно твёрдого тела.
Мы можем образовать упругое тело большой податливости, растворяя в воде желатин или рыбий клей и давая затем раствору остыть в студенистую массу. Уменьшая пропорцию желатина, можно уменьшить коэффициент упругости студенистой массы так, чтобы чрезвычайно малая сила вызывала значительное изменение формы вещества.
Было обнаружено, что когда деформация упругого тела превышает некоторый предел, зависящий от природы вещества, то оказывается, что после устранения напряжения вещество не возвращается точно к своей первоначальной форме, но остаётся деформированным. Такие пределы для различных видов деформаций называются пределами упругости.